James Watt - Andrew Carnegie (readnow TXT) 📗
- Author: Andrew Carnegie
- Performer: -
Book online «James Watt - Andrew Carnegie (readnow TXT) 📗». Author Andrew Carnegie
To the old home in Scotland our hero's face was now turned in the autumn of 1756, his twentieth year. His native air, best medicine of all for the invalid exile, soon restored his health, and to Glasgow he then went, in pursuance of his plan of life early laid down, to begin business on his own account. He thus became master before he was man. There was not in all Scotland a mathematical instrument maker, and here was one of the very best begging permission to establish himself in Glasgow. As in London so in Glasgow, however, the rules of the Guild of Hammermen, to which it was decided a mathematical instrument maker would belong, if one of such high calling made his appearance, prevented Watt from entrance if he had not consumed seven years in learning the trade. He had mastered it in one, and was ready to demonstrate his ability to excel by any kind of test proposed. Watt had entered in properly by the door of knowledge and experience of the craft, the only door through which entrance was possible, but he had travelled too quickly; besides he was "neither the son of a burgess, nor had he served an apprenticeship in the borough," and this was conclusive. How the world has travelled onward since those days! and yet our day is likely to be in as great contrast a hundred and fifty years hence. Protective tariffs between nations, and probably wars, may then seem as strangely absurd as the hammermen's rules. Even in 1905 we have still a far road to travel.
Failing in his efforts to establish himself in business, he asked the guild to permit him to rent and use a small workshop to make experiments, but even this was refused. We are disposed to wonder at this, but it was in strict accordance with the spirit of the times.
When the sky was darkest, the clouds broke and revealed the university as his guardian angel. Dr. Dick, Professor of natural philosophy, knowing of Watt's skill from his first start in Glasgow, had already employed him to repair some mathematical instruments bequeathed to the university by a Scotch gentleman in the West Indies, and the work had been well done, at a cost of five pounds—the first contract money ever earned by Watt in Glasgow. Good work always tells. Ability cannot be kept down forever; if crushed to earth, it rises again. So Watt's "good work" brought the Professors to his aid, several of whom he had met and impressed most favorably during its progress. The university charter, gift of the Pope in 1451, gave absolute authority within the area of its buildings, and the Professors resolved to give our hero shelter there—the best day's work they ever did. May they ever be remembered for this with feelings of deepest gratitude. What men these were! The venerable Anderson has already been spoken of; Adam Smith, who did for the science of economics what Watt did for steam, was one of Watt's dearest friends; Black, discoverer of latent heat; Robinson, Dick of whom we have spoken, and others. Such were the world's benefactors, who resolved to take Watt under their protection, and thus enabled him to do his appointed work. Glorious university, this of Glasgow, protector and nurse of Watt, probably of all its decisions this has been of the greatest service to man!
There are universities and universities. Glasgow's peculiar claim to regard lies in the perfect equality of the various schools, the humanities not neglected, the sciences appreciated, neither accorded precedence. Its scientific Professor, Thompson, now Lord Kelvin, was recently elevated to the Lord Chancellorship, the highest honor in its power to bestow.
Every important university develops special qualities of its own, for which it is noted. That of Glasgow is renowned for devotion to the scientific field. What a record is hers! Protector of Watt, going to extreme measures necessary, not alone to shelter him, but to enable him to labor within its walls and support himself; first university to establish an engineering school and professorship of engineering; first to establish a chemical teaching laboratory for students; first to have a physical laboratory for the exercise and instruction of students in experimental work; nursery from which came the steam engine of Watt, the discovery of latent heat by its Professor Black, and the successful operation of telegraph cables by its Professor and present Lord Chancellor (Lord Kelvin). May the future of Glasgow University copy fair her glorious past! Her "atmosphere" favors and stimulates steady, fruitful work. At all Scottish, as at all American universities, we may rejoice that there is always found a large number of the most distinguished students, who, figuratively speaking, cultivate knowledge upon a little oatmeal, earning money between terms to pay their way. It is highly probable that a greater proportion of these will be heard from in later years than of any other class.
American universities have, fortunately, followed the Glasgow model, and are giving more attention to the hitherto much neglected needs of science, and the practical departments of education, making themselves real universities, "where any man can study everything worth studying."
A room was assigned to Watt, only about twenty feet square, but it served him as it has done others since for great work. When the well-known author, Dr. Smiles, visited the room, he found in it the galvanic apparatus employed by Professor Thompson (Lord Kelvin) for perfecting his delicate invention which rendered ocean cables effective.
The kind and wise Professors did not stop here. They went pretty far, one cannot but think, when they took the next step in Watt's behalf, giving him a small room, which could be made accessible to the public, and this he was at liberty to open as a shop for the sale of his instruments, for Watt had to make a living by his handiwork. Strange work this for a university, especially in those days; but our readers, we are sure, will heartily approve the last, as they have no doubt approved the first action of the faculty in favor of struggling genius. Business was not prosperous at first with Watt, his instruments proving slow of sale. Of quadrants he could make three per week with the help of a lad, at a profit of forty shillings, but as sea-going ships could not then reach Glasgow, few could be sold. A supply was sent to Greenock, then the port of Glasgow, and sold by his father. He was reduced, as the greatest artists have often been, to the necessity of making what are known as "pot-boilers." Following the example of his first master in Glasgow he made spectacles, fiddles, flutes, guitars, and, of course, flies and fishing-tackle, and, as the record tells, "many dislocated violins, fractured guitars, fiddles also, if intreated, did he mend with good approbation." Such were his "pot-boilers" that met the situation.
His friend, Professor Black, who, like Professor Dick, had known of Watt's talent, one day asked him if he couldn't make an organ for him. By this time, Watt's reputation had begun to spread, and it finally carried him to the height of passing among his associates as "one who knew most things and could make anything." Watt knew nothing about organs, but he immediately undertook the work (1762), and the result was an indisputable success that led to his constructing, for a mason's lodge in Glasgow, a larger "finger organ," "which elicited the surprise and admiration of musicians." This extraordinary man improved everything he touched. For his second organ he devised a number of novelties, a sustained monochord, indicators and regulators of the blast, means for tuning to any system, contrivances for improving the stops, etc.
Lest we are led into a sad mistake here, let us stop a moment to consider how Watt so easily accomplished wonders, as if by inspiration. In all history it may be doubted whether success can be traced more clearly to long and careful preparation than in Watt's case. When we investigate, for instance, this seeming sleight-of-hand triumph with the organs, we find that upon agreeing to make the first, Watt immediately devoted himself to a study of the laws of harmony, making science supplement his lack of the musical ear. As usual, the study was exhaustive. Of course he found and took for guide the highest authority, a profound, but obscure book by Professor Smith of Cambridge University, and, mark this, he first made a model of the forthcoming organ. It is safe to say that there was not then a man in Britain who knew more of the science of music and was more thoroughly prepared to excel in the art of making organs than the new organ-builder.
When he attacked the problem of steam, as we shall soon see, the same course was followed, although it involved the mastering of three languages, that he should miss nothing.
We note that the taking of infinite pains, this fore-arming of himself, this knowing of everything that was to be known, the note of thorough preparation in Watt's career, is ever conspicuous. The best proof that he was a man of true genius is that he first made himself master of all knowledge bearing upon his tasks.
Watt could not have been more happily situated. His surroundings were ideal, the resources of the university were at his disposal, and, being conveniently situated, his workshop soon became the rendezvous of the faculty. He thus enjoyed the constant intimate companionship of one of the most distinguished bodies of educated men of science in the world. Glasgow was favored in her faculty those days as now. Two at least of Watt's closest friends, the discoverer of latent heat, and the author of the "Wealth of Nations," won enduring fame. Others were eminent. He did not fail to realise his advantages, and has left several acknowledgments of his debt to "those who were all much my superiors, I never having attended a college and being then but a mechanic." His so-called superiors did not quite see it in this light, as they have abundantly testified, but the modesty of Watt was ever conspicuous all through his life.
Watt led a busy life, the time not spent upon the indispensable "pot-boilers" being fully occupied in severe studies; chemistry, mathematics and mechanics all received attention. What he was finally to become no one could so far predict, but his associates expected something great from one who had so deeply impressed them.
Robison (afterwards Professor of natural history in Edinburgh University), being nearer Watt's age than the others, became his most intimate friend. His introduction to Watt, in 1758, has been described by himself. After feasting his eyes on the beautifully finished instruments in his shop, Robison entered into conversation with him. Expecting to find only a workman, he was surprised to find a philosopher. Says Robison:
I had the vanity to think myself a pretty good proficient in my favorite study (mathematical and mechanical philosophy), and was rather mortified at finding Mr. Watt so much my superior. But his own high relish for those things made him pleased with the chat of any person who had the same tastes with himself; or his innate complaisance made him indulge my curiosity, and even encourage my endeavors to form a more intimate acquaintance with him. I lounged much about him, and, I doubt not, was frequently teasing him. Thus our acquaintance began.
CHAPTER III
Captured by Steam
The supreme hour of Watt's life was now about to strike. He had become deeply interested in the subject of steam, to which Professor Robison had called his attention, Robison being then in his twentieth year, Watt three years older.
Robison's idea
Comments (0)