bookssland.com » Fiction » Curiosities of the Sky by Garrett Putman Serviss (highly illogical behavior txt) 📗

Book online «Curiosities of the Sky by Garrett Putman Serviss (highly illogical behavior txt) 📗». Author Garrett Putman Serviss



1 ... 26 27 28 29 30 31 32 33 34 35
Go to page:
become accustomed to live in their rarefied atmosphere (a thing not inconceivable, since men can live for a time at least in air hardly less rare), the most pressing problem for them is that of a water-supply, without which plant life cannot exist, while animal life in turn depends for its existence upon vegetation. The only direction in which they can seek water is that of the polar regions, where it is alternately condensed into snow and released in the liquid form by the effect of the seasonal changes. It is, then, to the annual melting of the polar snow-fields that the Martian engineers are supposed to have recourse in supplying the needs of their planet, and thus providing the means of prolonging their own existence. It is imagined that they have for this purpose constructed a stupendous system of irrigation extending over the temperate and equatorial regions of the planet. The ``canals'' represent the lines of irrigation, but the narrow streaks that we see are not the canals themselves, but the irrigated bands covered by them. Their dark hue, and their gradual appearance after the polar melting has begun, are due to the growth of vegetation stimulated by the water. The rounded areas visible where several ``canals'' meet and cross are called by Mr Lowell ``oases.'' These are supposed to be the principal centers of population and industry. It must be confessed that some of them, with their complicated systems of radiating lines, appear to answer very well to such a theory. No attempt to explain them by analogy with natural phenomena on the earth has proved successful.

But a great difficulty yet remains: How to explain the seemingly miraculous powers of the supposed engineers? Here recourse is had once more to the relative smallness of the planet. We have remarked that the force of gravity on Mars is only thirty-eight per cent of that on the earth. A steam-shovel driven by a certain horse-power would be nearly three times as effective there as here. A man of our stature on Mars would find his effective strength increased in the same proportion. But just because of the slight force of gravity there, a Martian might attain to the traditional stature of Goliath without finding his own weight an encumbrance to his activity, while at the same time his huge muscles would come into unimpeded play, enabling him single-handed to perform labors that would be impossible to a whole gang of terrestrial workmen. The effective powers of huge machines would be increased in the same way; and to all this must be added the fact that the mean density of the materials of which Mars is composed is much less than that of the constituents of the earth. Combining all these considerations, it becomes much less difficult to conceive that public works might be successfully undertaken on Mars which would be hopelessly beyond the limits of human accomplishment.

Certain other difficulties have also to be met; as, for instance, the relative coldness of the climate of Mars. At its distance it gets considerably less than half as much light and heat as we receive. In addition to this, the rarity of its atmosphere would naturally be expected to decrease the effective temperature at the planet's surface, since an atmosphere acts somewhat like the glass cover of a hot-house in retaining the solar heat which has penetrated it. It has been calculated that, unless there are mitigating circumstances of which we know nothing, the average temperature at the surface of Mars must be far below the freezing-point of water. To this it is replied that the possible mitigating circumstances spoken of evidently exist in fact, because we can see that the watery vapor condenses into snow around the poles in winter, but melts again when summer comes. The mitigating agent may be supposed to exist in the atmosphere where the presence of certain gases would completely alter the temperature gradients.

It might also be objected that it is inconceivable that the Martian engineers, however great may be their physical powers, and however gigantic the mechanical energies under their control, could force water in large quantities from the poles to the equator. This is an achievement that measures up to the cosmical standard. It is admitted by the champions of the theory that the difficulty is a formidable one; but they call attention to the singular fact that on Mars there can be found no chains of mountains, and it is even doubtful if ranges of hills exist there. The entire surface of the planet appears to be almost ``as smooth as a billiard ball,'' and even the broad regions which were once supposed to be seas apparently lie at practically the same level as the other parts, since the ``canals'' in many cases run uninterruptedly across them. Lowell's idea is that these sombre areas may be expanses of vegetation covering ground of a more or less marshy character, for while the largest of them appear to be permanent, there are some which vary coincidently with the variations of the canals.

As to the kind of machinery employed to force the water from the poles, it has been conjectured that it may have taken the form of a gigantic system of pumps and conduits; and since the Martians are assumed to be so far in advance of us in their mastery of scientific principles, the hypothesis will at least not be harmed by supposing that they have learned to harness forces of nature whose very existence in a manageable form is yet unrecognized on the earth. If we wish to let the imagination loose, we may conjecture that they have conquered the secret of those intra-atomic forces whose resistless energy is beginning to become evident to us, but the possibility of whose utilization remains a dream, the fulfillment of which nobody dares to predict.

Such, in very brief form, is the celebrated theory of Mars as an inhabited world. It certainly captivates the imagination, and if we believe it to represent the facts, we cannot but watch with the deepest sympathy this gallant struggle of an intellectual race to preserve its planet from the effects of advancing age and death. We may, indeed, wonder whether our own humanity, confronted by such a calamity, could be counted on to meet the emergency with equal stoutness of heart and inexhaustibleness of resource. Up to the present time we certainly have shown no capacity to confront Nature toe to toe, and to seize her by the shoulders and turn her round when she refuses to go our way. If we could get into wireless telephonic communication with the Martians we might learn from their own lips the secret of their more than ``Roman recovery.''

The Riddle of the Asteroids

Between the orbits of Mars and Jupiter revolves the most remarkable system of little bodies with which we are acquainted -- the Asteroids, or Minor Planets. Some six hundred are now known, and they may actually number thousands. They form virtually a ring about the sun. The most striking general fact about them is that they occupy the place in the sky which should be occupied, according to Bode's Law, by a single large planet. This fact, as we shall see, has led to the invention of one of the most extraordinary theories in astronomy -- viz., that of the explosion of a world!

Bode's Law, so-called, is only an empiric formula, but until the discovery of Neptune it accorded so well with the distances of the planets that astronomers were disposed to look upon it as really representing some underlying principle of planetary distribution. They were puzzled by the absence of a planet in the space between Mars and Jupiter, where the ``law'' demanded that there should be one, and an association of astronomers was formed to search for it. There was a decided sensation when, in 1801, Piazzi, of Palermo, announced that he had found a little planet which apparently occupied the place in the system which belonged to the missing body. He named it Ceres, and it was the first of the Asteroids. The next year Olbers, of Bremen, while looking for Ceres with his telescope, stumbled upon another small planet which he named Pallas. Immediately he was inspired with the idea that these two planets were fragments of a larger one which had formerly occupied the vacant place in the planetary ranks, and he predicted that others would be found by searching in the neighborhood of the intersection of the orbits of the two already discovered. This bold prediction was brilliantly fulfilled by the finding of two more -- Juno in 1804, and Vesta in 1807. Olbers would seem to have been led to the invention of his hypothesis of a planetary explosion by the faith which astronomers at that time had in Bode's Law. They appear to have thought that several planets revolving in the gap where the ``law'' called for but one could only be accounted for upon the theory that the original one had been broken up to form the several. Gravitation demanded that the remnants of a planet blown to pieces, no matter how their orbits might otherwise differ, should all return

1 ... 26 27 28 29 30 31 32 33 34 35
Go to page:

Free e-book «Curiosities of the Sky by Garrett Putman Serviss (highly illogical behavior txt) 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment