The History of the Telephone - Herbert N. Casson (story books for 5 year olds .TXT) 📗
- Author: Herbert N. Casson
- Performer: -
Book online «The History of the Telephone - Herbert N. Casson (story books for 5 year olds .TXT) 📗». Author Herbert N. Casson
SYSTEM OF ANY SORT WHATEVER.
As for Bell’s first telephone lines, they were as simple as clothes-lines. Each short little wire stood by itself, with one instrument at each end.
There were no operators, switchboards, or exchanges.
But there had now come a time when
more than two persons wanted to be in the same conversational group. This was a larger use of the telephone; and while Bell himself had foreseen it, he had not worked out a plan whereby it could be carried out. Here was the new problem, and a most stupendous one—how to link together three telephones, or three hundred, or three thousand, or three million, so that any two of them could be joined at a moment’s notice.
And that was not all. These young men had not only to battle against mystery and “the powers of the air”; they had not only to protect their tiny electric messenger, and to create a system of wire highways along which he could run up and down safely; they had to do more.
They had to make this system so simple and fool-proof that every one—every one except the deaf and dumb—could use it without any previous experience. They had to educate Bell’s Genie of the Wire so that he would not only obey his masters, but anybody—anybody who could speak to him in any language.
No doubt, if the young men had stopped to consider their life-work as a whole, some of them might have turned back. But they had no time to philosophize. They were like the boy who learns how to swim by being pushed into deep water. Once the telephone business was started, it had to be kept going; and as it grew, there came one after another a series of congestions.
Two courses were open; either the business had to be kept down to suit the apparatus, or the apparatus had to be developed to keep pace with the business. The telephone men, most of them, at least, chose development; and the brilliant inventions that afterwards made some of them famous were compelled by sheer necessity and desperation.
The first notable improvement upon Bell’s invention was the making of the transmitter, in 1877, by Emile Berliner. This, too, was a romance. Berliner, as a poor German youth of nineteen, had landed in Castle Garden in 1870
to seek his fortune. He got a job as “a sort of bottle-washer at six dollars a week,” he says, in a chemical shop in New York. At nights he studied science in the free classes of Cooper Union. Then a druggist named Engel gave him a copy of Muller’s book on physics, which was precisely the stimulus needed by his creative brain. In 1876 he was fascinated by the telephone, and set out to construct one on a different plan. Several months later he had succeeded and was overjoyed to receive his first patent for a telephone transmitter. He had by this time climbed up from his bottle-washing to be a clerk in a drygoods store in Washington; but he was still poor and as unpractical as most inventors. Joseph Henry, the Sage of the American scientific world, was his friend, though too old to give him any help. Consequently, when Edison, two weeks later, also invented a transmitter, the prior claim of Berliner was for a time wholly ignored. Later the Bell Company bought Berliner’s patent and took up his side of the case. There was a seemingly endless succession of delays—fourteen years of the most vexatious delays—until finally the Supreme Court of the United States ruled that Berliner, and not Edison, was the original inventor of the transmitter.
From first to last, the transmitter has been the product of several minds. Its basic idea is the varying of the electric current by varying the pressure between two points. Bell unquestionably suggested it in his famous patent, when he wrote of “increasing and diminishing the resistance.”
Berliner was the first actually to construct one. Edison greatly improved it by
using soft carbon instead of a steel point. A Kentucky professor, David E. Hughes, started a new line of development by adapting a Bell telephone into a “microphone,” a fantastic little instrument that would detect the noise made by a fly in walking across a table. Francis Blake, of Boston, changed a microphone into a practical transmitter. The Rev. Henry Hunnings, an English clergyman, hit upon the happy idea of using carbon in the form of small granules.
And one of the Bell experts, named White, improved the Hunnings transmitter into its present shape. Both transmitter and receiver seem now to be as complete an artificial tongue and ear as human ingenuity can make them. They have persistently grown more elaborate, until today a telephone set, as it stands on a desk, contains as many as one hundred and thirty separate pieces, as well as a saltspoonful of glistening granules of carbon.
Next after the transmitter came the problem of the MYSTERIOUS NOISES. This was, perhaps, the most weird and mystifying of all the telephone problems. The fact was that the telephone had brought within hearing distance a new wonder-world of sound. All wires at that time were single, and ran into the earth at each end, making what was called a “grounded circuit.” And this connection with the earth, which is really a big magnet, caused all manner of strange and uncouth noises on the telephone wires.
Noises! Such a jangle of meaningless noises had never been heard by human ears. There were spluttering and bubbling, jerking and rasping, whistling and screaming. There were the rustling of leaves, the croaking of frogs, the hissing of steam, and the flapping of birds’ wings.
There were clicks from telegraph wires, scraps of talk from other telephones, and curious little squeals that were unlike any known sound. The lines running east and west were noisier than the lines running north and south. The night was noisier than the day, and at the ghostly hour of midnight, for what strange reason no one knows, the babel was at its height. Watson, who had a fanciful mind, suggested that perhaps these sounds were signals from the inhabitants of Mars or some other sociable planet. But the matter-of-fact young telephonists agreed to lay the blame on “induction”—a hazy word which usually meant the natural meddlesomeness of electricity.
Whatever else the mysterious noises were, they were a nuisance. The poor little telephone business was plagued almost out of its senses. It was like a dog with a tin can tied to its tail.
No matter where it went, it was pursued by this unearthly clatter. “We were ashamed to present our bills,” said A. A. Adee, one of the first agents; “for no matter how plainly a man talked into his telephone, his language was apt to sound like Choctaw at the other end of the line.”
All manner of devices were solemnly tried to hush the wires, and each one usually proved to be as futile as an incantation. What was to be done? Step by step the telephone men were driven back. They were beaten. There was no way to silence these noises. Reluctantly, they agreed that the only way was to pull up the ends of each wire from the tainted earth, and join them by a second wire. This was the “metallic circuit” idea. It meant an appalling increase in the use of wire. It would compel the rebuilding of the switchboards and the invention of new signal systems. But it was inevitable; and in 1883, while the dispute about it was in full blast, one of the young men quietly slipped it into use on a new line between Boston and Providence.
The effect was magical. “At last,” said the delighted manager, “we have a perfectly quiet line.”
This young man, a small, slim youth who was twenty-two years old and looked younger, was no other than J. J. Carty, now the first of telephone engineers and almost the creator of his profession. Three years earlier he had timidly asked for a job as operator in the Boston exchange, at five dollars a week, and had shown such an aptitude for the work that he was soon made one of the captains. At thirty years of age he became a central figure in the development of the art of telephony.
What Carty has done is known by telephone men in all countries; but the story of Carty himself —who he is, and why—is new. First of all, he is Irish, pure Irish. His father had left Ireland as a boy in 1825. During the Civil War his father made guns in the city of Cambridge, where young John Joseph was born; and afterwards he made bells for church steeples. He was instinctively a mechanic and proud of his calling. He could tell the weight of a bell from the sound of it. Moses G. Farmer, the electrical inventor, and Howe, the creator of the sewing-machine, were his friends.
At five years of age, little John J. Carty was taken by his father to the shop where the bells were made, and he was profoundly impressed by the magical strength of a big magnet, that picked up heavy weights as though they were feathers.
At the high school his favorite study was physics; and for a time he and another boy named Rolfe—now a distinguished man of science—carried on electrical experiments of their own in the cellar of the Rolfe house. Here they had a “Tom Thumb” telegraph, a telephone which they had ventured to improve, and a hopeless tangle of wires. Whenever they could afford to buy more wires and batteries, they went to a near-by store which supplied electrical apparatus to the professors and students of Harvard. This store, with its workshop in the rear, seemed to the two boys a veritable wonderland; and when Carty, a youth of eighteen, was compelled to leave school because of his bad eyesight, he ran at once and secured the glorious job of being boy-of-all-work in this store of wonders. So, when he became an operator in the Boston telephone exchange, a year later, he had already developed to a remarkable degree his natural genius for telephony.
Since then, Carty and the telephone business have grown up together, he always a little distance in advance. No other man has touched the apparatus of telephony at so many points.
He fought down the flimsy, clumsy methods, which led from one snarl to another. He found out how to do with wires what Dickens did with words. “Let us do it right, boys, and then we won’t have any bad dreams”—this has been his motif. And, as the crown and climax of his work, he mapped out the profession of telephone engineering on the widest and most comprehensive lines.
In Carty, the engineer evolved into the educator. His end of the American Telephone and Telegraph Company became the University of the Telephone. He was himself a student by disposition, with a special taste for the writings of Faraday, the forerunner; Tyndall, the expounder; and Spencer, the philosopher. And
in 1890, he gathered around him
Comments (0)