bookssland.com » History » History of Astronomy - George Forbes (top 20 books to read .TXT) 📗

Book online «History of Astronomy - George Forbes (top 20 books to read .TXT) 📗». Author George Forbes



1 ... 14 15 16 17 18 19 20 21 22 23
Go to page:
included. The computation of their perturbations and ephemerides by Euler’s and Lagrange’s method of variable elements became so laborious that Encke devised a special process for these, which can be applied to many other disturbed orbits. [8]

When a photograph is taken of a region of the heavens including an asteroid, the stars are photographed as points because the telescope is made to follow their motion; but the asteroids, by their proper motion, appear as short lines.

The discovery of Eros and the photographic attack upon its path have been described in their relation to finding the sun’s distance.

A group of four asteroids has lately been found, with a mean distance and period equal to that of Jupiter. To three of these masculine names have been given—Hector, Patroclus, Achilles; the other has not yet been named.

 

FOOTNOTES:

[1] Langrenus (van Langren), F. Selenographia sive lumina austriae philippica; Bruxelles, 1645.

[2] Astr. Nach., 2,944.

[3] Acad. des Sc., Paris; C.R., lxxxiii., 1876.

[4] Mem. Spettr. Ital., xi., p. 28.

[5] R. S. Phil. Trans., No. 1.

[6] Grant’s Hist. Ph. Ast., p. 267.

[7] Nature, November 12th, 1908.

[8] Ast. Nach., Nos. 791, 792, 814, translated by G. B. Airy. Naut. Alm., Appendix, 1856.

 

14. COMETS AND METEORS.

 

Ever since Halley discovered that the comet of 1682 was a member of the solar system, these wonderful objects have had a new interest for astronomers; and a comparison of orbits has often identified the return of a comet, and led to the detection of an elliptic orbit where the difference from a parabola was imperceptible in the small portion of the orbit visible to us. A remarkable case in point was the comet of 1556, of whose identity with the comet of 1264 there could be little doubt. Hind wanted to compute the orbit more exactly than Halley had done. He knew that observations had been made, but they were lost. Having expressed his desire for a search, all the observations of Fabricius and of Heller, and also a map of the comet’s path among the stars, were eventually unearthed in the most unlikely manner, after being lost nearly three hundred years. Hind and others were certain that this comet would return between 1844 and 1848, but it never appeared.

When the spectroscope was first applied to finding the composition of the heavenly bodies, there was a great desire to find out what comets are made of. The first opportunity came in 1864, when Donati observed the spectrum of a comet, and saw three bright bands, thus proving that it was a gas and at least partly self-luminous. In 1868 Huggins compared the spectrum of Winnecke’s comet with that of a Geissler tube containing olefiant gas, and found exact agreement. Nearly all comets have shown the same spectrum.[1] A very few comets have given bright band spectra differing from the normal type. Also a certain kind of continuous spectrum, as well as reflected solar light showing Frauenhofer lines, have been seen.

[Illustration: COPY OF THE DRAWING MADE BY PAUL FABRICIUS. To define the path of comet 1556. After being lost for 300 years, this drawing was recovered by the prolonged efforts of Mr. Hind and Professor Littrow in 1856.]

When Wells’s comet, in 1882, approached very close indeed to the sun, the spectrum changed to a monochromatic yellow colour, due to sodium.

For a full account of the wonders of the cometary world the reader is referred to books on descriptive astronomy, or to monographs on comets.[2] Nor can the very uncertain speculations about the structure of comets’ tails be given here. A new explanation has been proposed almost every time that a great discovery has been made in the theory of light, heat, chemistry, or electricity.

Halley’s comet remained the only one of which a prediction of the return had been confirmed, until the orbit of the small, ill-defined comet found by Pons in 1819 was computed by Encke, and found to have a period of 3 1/3 years. It was predicted to return in 1822, and was recognised by him as identical with many previous comets. This comet, called after Encke, has showed in each of its returns an inexplicable reduction of mean distance, which led to the assertion of a resisting medium in space until a better explanation could be found.[3]

Since that date fourteen comets have been found with elliptic orbits, whose aphelion distances are all about the same as Jupiter’s mean distance; and six have an aphelion distance about ten per cent, greater than Neptune’s mean distance. Other comets are similarly associated with the planets Saturn and Uranus.

The physical transformations of comets are among the most wonderful of unexplained phenomena in the heavens. But, for physical astronomers, the greatest interest attaches to the reduction of radius vector of Encke’s comet, the splitting of Biela’s comet into two comets in 1846, and the somewhat similar behaviour of other comets. It must be noted, however, that comets have a sensible size, that all their parts cannot travel in exactly the same orbit under the sun’s gravitation, and that their mass is not sufficient to retain the parts together very forcibly; also that the inevitable collision of particles, or else fluid friction, is absorbing energy, and so reducing the comet’s velocity.

In 1770 Lexell discovered a comet which, as was afterwards proved by investigations of Lexell, Burchardt, and Laplace, had in 1767 been deflected by Jupiter out of an orbit in which it was invisible from the earth into an orbit with a period of 51/2 years, enabling it to be seen. In 1779 it again approached Jupiter closer than some of his satellites, and was sent off in another orbit, never to be again recognised.

But our interest in cometary orbits has been added to by the discovery that, owing to the causes just cited, a comet, if it does not separate into discrete parts like Biela’s, must in time have its parts spread out so as to cover a sensible part of the orbit, and that, when the earth passes through such part of a comet’s orbit, a meteor shower is the result.

A magnificent meteor shower was seen in America on November 12th-13th, 1833, when the paths of the meteors all seemed to radiate from a point in the constellation Leo. A similar display had been witnessed in Mexico by Humboldt and Bonpland on November 12th, 1799. H. A. Newton traced such records back to October 13th, A.D. 902. The orbital motion of a cloud or stream of small particles was indicated. The period favoured by H. A. Newton was 3541/2 days; another suggestion was 3751/2 days, and another 331/4 years. He noticed that the advance of the date of the shower between 902 and 1833, at the rate of one day in seventy years, meant a progression of the node of the orbit. Adams undertook to calculate what the amount would be on all the five suppositions that had been made about the period. After a laborious work, he found that none gave one day in seventy years except the 331/4-year period, which did so exactly. H. A. Newton predicted a return of the shower on the night of November 13th-14th, 1866. He is now dead; but many of us are alive to recall the wonder and enthusiasm with which we saw this prediction being fulfilled by the grandest display of meteors ever seen by anyone now alive.

The progression of the nodes proved the path of the meteor stream to be retrograde. The radiant had almost the exact longitude of the point towards which the earth was moving. This proved that the meteor cluster was at perihelion. The period being known, the eccentricity of the orbit was obtainable, also the orbital velocity of the meteors in perihelion; and, by comparing this with the earth’s velocity, the latitude of the radiant enabled the inclination to be determined, while the longitude of the earth that night was the longitude of the node. In such a way Schiaparelli was able to find first the elements of the orbit of the August meteor shower (Perseids), and to show its identity with the orbit of Tuttle’s comet 1862.iii. Then, in January 1867, Le Verrier gave the elements of the November meteor shower (Leonids); and Peters, of Altona, identified these with Oppolzer’s elements for Tempel’s comet 1866—Schiaparelli having independently attained both of these results. Subsequently Weiss, of Vienna, identified the meteor shower of April 20th (Lyrids) with comet 1861. Finally, that indefatigable worker on meteors, A. S. Herschel, added to the number, and in 1878 gave a list of seventy-six coincidences between cometary and meteoric orbits.

Cometary astronomy is now largely indebted to photography, not merely for accurate delineations of shape, but actually for the discovery of most of them. The art has also been applied to the observation of comets at distances from their perihelia so great as to prevent their visual observation. Thus has Wolf, of Heidelburg, found upon old plates the position of comet 1905.v., as a star of the 15.5 magnitude, 783 days before the date of its discovery. From the point of view of the importance of finding out the divergence of a cometary orbit from a parabola, its period, and its aphelion distance, this increase of range attains the very highest value.

The present Astronomer Royal, appreciating this possibility, has been searching by photography for Halley’s comet since November, 1907, although its perihelion passage will not take place until April, 1910.

 

FOOTNOTES:

[1] In 1874, when the writer was crossing the Pacific Ocean in H.M.S. “Scout,” Coggia’s comet unexpectedly appeared, and (while Colonel Tupman got its positions with the sextant) he tried to use the prism out of a portable direct-vision spectroscope, without success until it was put in front of the object-glass of a binocular, when, to his great joy, the three band images were clearly seen.

[2] Such as The World of Comets, by A. Guillemin; History of Comets, by G. R. Hind, London, 1859; Theatrum Cometicum, by S. de Lubienietz, 1667; Cometographie, by Pingré, Paris, 1783; Donati’s Comet, by Bond.

[3] The investigations by Von Asten (of St. Petersburg) seem to support, and later ones, especially those by Backlund (also of St. Petersburg), seem to discredit, the idea of a resisting medium.

 

15. THE FIXED STARS AND NEBULÆ.

 

Passing now from our solar system, which appears to be subject to the action of the same forces as those we experience on our globe, there remains an innumerable host of fixed stars, nebulas, and nebulous clusters of stars. To these the attention of astronomers has been more earnestly directed since telescopes have been so much enlarged. Photography also has enabled a vast amount of work to be covered in a comparatively short period, and the spectroscope has given them the means, not only of studying the chemistry of the heavens, but also of detecting any motion in the line of sight from less than a mile a second and upwards in any star, however distant, provided it be bright enough.

[Illustration: SIR WILLIAM HERSCHEL, F.R.S.—1738-1822. Painted by Lemuel F. Abbott; National Portrait Gallery, Room XX.]

In the field of telescopic discovery beyond our solar system there is no one who has enlarged our knowledge so much as Sir William Herschel, to whom we owe the greatest discovery in dynamical astronomy among the stars—viz., that the law of gravitation extends to the most distant stars, and that many of them describe elliptic orbits about each other. W. Herschel was born at Hanover in 1738, came to England in 1758 as a trained musician, and died in 1822. He studied science when he could, and hired a telescope, until he learnt to make his own specula and telescopes. He made 430 parabolic specula in twenty-one years. He discovered 2,500 nebulæ and

1 ... 14 15 16 17 18 19 20 21 22 23
Go to page:

Free e-book «History of Astronomy - George Forbes (top 20 books to read .TXT) 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment