bookssland.com » History » History of Astronomy - George Forbes (top 20 books to read .TXT) 📗

Book online «History of Astronomy - George Forbes (top 20 books to read .TXT) 📗». Author George Forbes



1 2 3 4 5 6 7 8 9 10 ... 23
Go to page:
showed that the sun must be at least nineteen times as far off as the moon, which is far short of the mark. He also found the sun’s diameter, correctly, to be half a degree. Eratosthenes (276-196 B.C.) measured the inclination to the equator of the sun’s apparent path in the heavens—i.e., he measured the obliquity of the ecliptic, making it 23° 51’, confirming our knowledge of its continuous diminution during historical times. He measured an arc of meridian, from Alexandria to Syene (Assuan), and found the difference of latitude by the length of a shadow at noon, summer solstice. He deduced the diameter of the earth, 250,000 stadia. Unfortunately, we do not know the length of the stadium he used.

Hipparchus (190-120 B.C.) may be regarded as the founder of observational astronomy. He measured the obliquity of the ecliptic, and agreed with Eratosthenes. He altered the length of the tropical year from 365 days, 6 hours to 365 days, 5 hours, 53 minutes—still four minutes too much. He measured the equation of time and the irregular motion of the sun; and allowed for this in his calculations by supposing that the centre, about which the sun moves uniformly, is situated a little distance from the fixed earth. He called this point the excentric. The line from the earth to the “excentric” was called the line of apses. A circle having this centre was called the equant, and he supposed that a radius drawn to the sun from the excentric passes over equal arcs on the equant in equal times. He then computed tables for predicting the place of the sun.

He proceeded in the same way to compute Lunar tables. Making use of Chaldæan eclipses, he was able to get an accurate value of the moon’s mean motion. [Halley, in 1693, compared this value with his own measurements, and so discovered the acceleration of the moon’s mean motion. This was conclusively established, but could not be explained by the Newtonian theory for quite a long time.] He determined the plane of the moon’s orbit and its inclination to the ecliptic. The motion of this plane round the pole of the ecliptic once in eighteen years complicated the problem. He located the moon’s excentric as he had done the sun’s. He also discovered some of the minor irregularities of the moon’s motion, due, as Newton’s theory proves, to the disturbing action of the sun’s attraction.

In the year 134 B.C. Hipparchus observed a new star. This upset every notion about the permanence of the fixed stars. He then set to work to catalogue all the principal stars so as to know if any others appeared or disappeared. Here his experiences resembled those of several later astronomers, who, when in search of some special object, have been rewarded by a discovery in a totally different direction. On comparing his star positions with those of Timocharis and Aristillus he round no stars that had appeared or disappeared in the interval of 150 years; but he found that all the stars seemed to have changed their places with reference to that point in the heavens where the ecliptic is 90° from the poles of the earth—i.e., the equinox. He found that this could be explained by a motion of the equinox in the direction of the apparent diurnal motion of the stars. This discovery of precession of the equinoxes, which takes place at the rate of 52”.1 every year, was necessary for the progress of accurate astronomical observations. It is due to a steady revolution of the earth’s pole round the pole of the ecliptic once in 26,000 years in the opposite direction to the planetary revolutions.

Hipparchus was also the inventor of trigonometry, both plane and spherical. He explained the method of using eclipses for determining the longitude.

In connection with Hipparchus’ great discovery it may be mentioned that modern astronomers have often attempted to fix dates in history by the effects of precession of the equinoxes. (1) At about the date when the Great Pyramid may have been built gamma Draconis was near to the pole, and must have been used as the pole-star. In the north face of the Great Pyramid is the entrance to an inclined passage, and six of the nine pyramids at Gizeh possess the same feature; all the passages being inclined at an angle between 26° and 27° to the horizon and in the plane of the meridian. It also appears that 4,000 years ago—i.e., about 2100 B.C.—an observer at the lower end of the passage would be able to see gamma Draconis, the then pole-star, at its lower culmination.[1] It has been suggested that the passage was made for this purpose. On other grounds the date assigned to the Great Pyramid is 2123 B.C.

(2) The Chaldæans gave names to constellations now invisible from Babylon which would have been visible in 2000 B.C., at which date it is claimed that these people were studying astronomy.

(3) In the Odyssey, Calypso directs Odysseus, in accordance with Phoenician rules for navigating the Mediterranean, to keep the Great Bear “ever on the left as he traversed the deep” when sailing from the pillars of Hercules (Gibraltar) to Corfu. Yet such a course taken now would land the traveller in Africa. Odysseus is said in his voyage in springtime to have seen the Pleiades and Arcturus setting late, which seemed to early commentators a proof of Homer’s inaccuracy. Likewise Homer, both in the Odyssey [2] (v. 272-5) and in the Iliad (xviii. 489), asserts that the Great Bear never set in those latitudes. Now it has been found that the precession of the equinoxes explains all these puzzles; shows that in springtime on the Mediterranean the Bear was just above the horizon, near the sea but not touching it, between 750 B.C. and 1000 B.C.; and fixes the date of the poems, thus confirming other evidence, and establishing Homer’s character for accuracy. [3]

(4) The orientation of Egyptian temples and Druidical stones is such that possibly they were so placed as to assist in the observation of the heliacal risings [4] of certain stars. If the star were known, this would give an approximate date. Up to the present the results of these investigations are far from being conclusive.

Ptolemy (130 A.D.) wrote the Suntaxis, or Almagest, which includes a cyclopedia of astronomy, containing a summary of knowledge at that date. We have no evidence beyond his own statement that he was a practical observer. He theorised on the planetary motions, and held that the earth is fixed in the centre of the universe. He adopted the excentric and equant of Hipparchus to explain the unequal motions of the sun and moon. He adopted the epicycles and deferents which had been used by Apollonius and others to explain the retrograde motions of the planets. We, who know that the earth revolves round the sun once in a year, can understand that the apparent motion of a planet is only its motion relative to the earth. If, then, we suppose the earth fixed and the sun to revolve round it once a year, and the planets each in its own period, it is only necessary to impose upon each of these an additional annual motion to enable us to represent truly the apparent motions. This way of looking at the apparent motions shows why each planet, when nearest to the earth, seems to move for a time in a retrograde direction. The attempts of Ptolemy and others of his time to explain the retrograde motion in this way were only approximate. Let us suppose each planet to have a bar with one end centred at the earth. If at the other end of the bar one end of a shorter bar is pivotted, having the planet at its other end, then the planet is given an annual motion in the secondary circle (the epicycle), whose centre revolves round the earth on the primary circle (the deferent), at a uniform rate round the excentric. Ptolemy supposed the centres of the epicycles of Mercury and Venus to be on a bar passing through the sun, and to be between the earth and the sun. The centres of the epicycles of Mars, Jupiter, and Saturn were supposed to be further away than the sun. Mercury and Venus were supposed to revolve in their epicycles in their own periodic times and in the deferent round the earth in a year. The major planets were supposed to revolve in the deferent round the earth in their own periodic times, and in their epicycles once in a year.

It did not occur to Ptolemy to place the centres of the epicycles of Mercury and Venus at the sun, and to extend the same system to the major planets. Something of this sort had been proposed by the Egyptians (we are told by Cicero and others), and was accepted by Tycho Brahe; and was as true a representation of the relative motions in the solar system as when we suppose the sun to be fixed and the earth to revolve.

The cumbrous system advocated by Ptolemy answered its purpose, enabling him to predict astronomical events approximately. He improved the lunar theory considerably, and discovered minor inequalities which could be allowed for by the addition of new epicycles. We may look upon these epicycles of Apollonius, and the excentric of Hipparchus, as the responses of these astronomers to the demand of Plato for uniform circular motions. Their use became more and more confirmed, until the seventeenth century, when the accurate observations of Tycho Brahe enabled Kepler to abolish these purely geometrical makeshifts, and to substitute a system in which the sun became physically its controller.

 

FOOTNOTES:

[1] Phil. Mag., vol. xxiv., pp. 481-4.

[2]

Plaeiadas t’ esoronte kai opse duonta bootaen ‘Arkton th’ aen kai amaxan epiklaesin kaleousin, ‘Ae t’ autou strephetai kai t’ Oriona dokeuei, Oin d’ammoros esti loetron Okeanoio.

“The Pleiades and Boötes that setteth late, and the Bear, which they likewise call the Wain, which turneth ever in one place, and keepeth watch upon Orion, and alone hath no part in the baths of the ocean.”

[3] See Pearson in the Camb. Phil. Soc. Proc., vol. iv., pt. ii., p. 93, on whose authority the above statements are made.

[4] See p. 6 for definition.

 

4. THE REIGN OF EPICYCLES—FROM PTOLEMY TO COPERNICUS.

 

After Ptolemy had published his book there seemed to be nothing more to do for the solar system except to go on observing and finding more and more accurate values for the constants involved—viz., the periods of revolution, the diameter of the deferent,[1] and its ratio to that of the epicycle,[2] the distance of the excentric[3] from the centre of the deferent, and the position of the line of apses,[4] besides the inclination and position of the plane of the planet’s orbit. The only object ever aimed at in those days was to prepare tables for predicting the places of the planets. It was not a mechanical problem; there was no notion of a governing law of forces.

From this time onwards all interest in astronomy seemed, in Europe at least, to sink to a low ebb. When the Caliph Omar, in the middle of the seventh century, burnt the library of Alexandria, which had been the centre of intellectual progress, that centre migrated to Baghdad, and the Arabs became the leaders of science and philosophy. In astronomy they made careful observations. In the middle of the ninth century Albategnius, a Syrian prince, improved the value of excentricity of the sun’s orbit, observed the motion of the moon’s apse, and thought he detected a smaller progression of the sun’s apse. His tables were much more accurate than Ptolemy’s. Abul Wefa, in the tenth century, seems to have discovered the moon’s “variation.” Meanwhile the Moors were leaders of science in the

1 2 3 4 5 6 7 8 9 10 ... 23
Go to page:

Free e-book «History of Astronomy - George Forbes (top 20 books to read .TXT) 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment