The Notebooks of Leonardo Da Vinci - Leonardo Da Vinci (ebook reader below 3000 txt) 📗
- Author: Leonardo Da Vinci
- Performer: 0192838970
Book online «The Notebooks of Leonardo Da Vinci - Leonardo Da Vinci (ebook reader below 3000 txt) 📗». Author Leonardo Da Vinci
In proportion as the opening is smaller than the shaded body, so much less will the images transmitted through this opening intersect each other. The sides of images which pass through openings into a dark room intersect at a point which is nearer to the opening in proportion as the opening is narrower. To prove this let a b be an object in light and shade which sends not its shadow but the image of its darkened form through the opening d e which is as wide as this shaded body; and its sides a b, being straight lines (as has been proved) must intersect between the shaded object and the opening; but nearer to the opening in proportion as it is smaller than the object in shade. As is shown, on your right hand and your left hand, in the two diagrams a b c n m o where, the right opening d e, being equal in width to the shaded object a b, the intersection of the sides of the said shaded object occurs half way between the opening and the shaded object at the point c. But this cannot happen in the left hand figure, the opening o being much smaller than the shaded object n m.
It is impossible that the images of objects should be seen between the objects and the openings through which the images of these bodies are admitted; and this is plain, because where the atmosphere is illuminated these images are not formed visibly.
When the images are made double by mutually crossing each other they are invariably doubly as dark in tone. To prove this let d e h be such a doubling which although it is only seen within the space between the bodies in b and i this will not hinder its being seen from f g or from f m; being composed of the images a b i k which run together in d e h.
[Footnote: 81. On the original diagram at the beginning of this chapter Leonardo has written “azurro” (blue) where in the facsimile I have marked A, and “giallo” (yellow) where B stands.]
[Footnote: 15—23. These lines stand between the diagrams I and III.]
[Footnote: 24—53. These lines stand between the diagrams I and II.]
[Footnote: 54—97 are written along the left side of diagram I.]
82.
An experiment showing that though the pupil may not be moved from its position the objects seen by it may appear to move from their places.
If you look at an object at some distance from you and which is below the eye, and fix both your eyes upon it and with one hand firmly hold the upper lid open while with the other you push up the under lid—still keeping your eyes fixed on the object gazed at—you will see that object double; one [image] remaining steady, and the other moving in a contrary direction to the pressure of your finger on the lower eyelid. How false the opinion is of those who say that this happens because the pupil of the eye is displaced from its position.
How the above mentioned facts prove that the pupil acts upside down in seeing.
[Footnote: 82. 14—17. The subject indicated by these two headings is fully discussed in the two chapters that follow them in the original; but it did not seem to me appropriate to include them here.]
Demostration of perspective by means of a vertical glass plane
(83-85).
83.
OF THE PLANE OF GLASS.
Perspective is nothing else than seeing place [or objects] behind a plane of glass, quite transparent, on the surface of which the objects behind that glass are to be drawn. These can be traced in pyramids to the point in the eye, and these pyramids are intersected on the glass plane.
84.
Pictorial perspective can never make an object at the same distance, look of the same size as it appears to the eye. You see that the apex of the pyramid f c d is as far from the object c d as the same point f is from the object a b; and yet c d, which is the base made by the painter’s point, is smaller than a b which is the base of the lines from the objects converging in the eye and refracted at s t, the surface of the eye. This may be proved by experiment, by the lines of vision and then by the lines of the painter’s plumbline by cutting the real lines of vision on one and the same plane and measuring on it one and the same object.
85.
PERSPECTIVE.
The vertical plane is a perpendicular line, imagined as in front of the central point where the apex of the pyramids converge. And this plane bears the same relation to this point as a plane of glass would, through which you might see the various objects and draw them on it. And the objects thus drawn would be smaller than the originals, in proportion as the distance between the glass and the eye was smaller than that between the glass and the objects.
PERSPECTIVE.
The different converging pyramids produced by the objects, will show, on the plane, the various sizes and remoteness of the objects causing them.
PERSPECTIVE.
All those horizontal planes of which the extremes are met by perpendicular lines forming right angles, if they are of equal width the more they rise to the level of eye the less this is seen, and the more the eye is above them the more will their real width be seen.
PERSPECTIVE.
The farther a spherical body is from the eye the more you will see of it.
The angle of sight varies with the distance (86-88)
86.
A simple and natural method; showing how objects appear to the eye without any other medium.
The object that is nearest to the eye always seems larger than another of the same size at greater distance. The eye m, seeing the spaces o v x, hardly detects the difference between them, and the. reason of this is that it is close to them [Footnote 6: It is quite inconceivable to me why M. RAVAISSON, in a note to his French translation of this simple passage should have remarked: Il est clair que c’est par erreur que Leonard a �crit per esser visino au lieu de per non esser visino. (See his printed ed. of MS. A. p. 38.)]; but if these spaces are marked on the vertical plane n o the space o v will be seen at o r, and in the same way the space v x will appear at r q. And if you carry this out in any place where you can walk round, it will look out of proportion by reason of the great difference in the spaces o r and r q. And this proceeds from the eye being so much below [near] the plane that the plane is foreshortened. Hence, if you wanted to carry it out, you would have [to arrange] to see the perspective through a single hole which must be at the point m, or else you must go to a distance of at least 3 times the height of the object you see. The plane o p being always equally remote from the eye will reproduce the objects in a satisfactory way, so that they may be seen from place to place.
87.
How every large mass sends forth its images, which may diminish through infinity.
The images of any large mass being infinitely divisible may be infinitely diminished.
88.
Objects of equal size, situated in various places, will be seen by different pyramids which will each be smaller in proportion as the object is farther off.
89.
Perspective, in dealing with distances, makes use of two opposite pyramids, one of which has its apex in the eye and the base as distant as the horizon. The other has the base towards the eye and the apex on the horizon. Now, the first includes the [visible] universe, embracing all the mass of the objects that lie in front of the eye; as it might be a vast landscape seen through a very small opening; for the more remote the objects are from the eye, the greater number can be seen through the opening, and thus the pyramid is constructed with the base on the horizon and the apex in the eye, as has been said. The second pyramid is extended to a spot which is smaller in proportion as it is farther from the eye; and this second perspective [= pyramid] results from the first.
90.
SIMPLE PERSPECTIVE.
Simple perspective is that which is constructed by art on a vertical plane which is equally distant from the eye in every part. Complex perspective is that which is constructed on a ground-plan in which none of the parts are equally distant from the eye.
91.
PERSPECTIVE.
No surface can be seen exactly as it is, if the eye that sees it is not equally remote from all its edges.
92.
WHY WHEN AN OBJECT IS PLACED CLOSE TO THE EYE ITS EDGES ARE INDISTINCT.
When an object opposite the eye is brought too close to it, its edges must become too confused to be distinguished; as it happens with objects close to a light, which cast a large and indistinct shadow, so is it with an eye which estimates objects opposite to it; in all cases of linear perspective, the eye acts in the same way as the light. And the reason is that the eye has one leading line (of vision) which dilates with distance and embraces with true discernment large objects at a distance as well as small ones that are close. But since the eye sends out a multitude of lines which surround this chief central one and since these which are farthest from the centre in this cone of lines are less able to discern with accuracy, it follows that an object brought close to the eye is not at a due distance, but is too near for the central line to be able to discern the outlines of the object. So the edges fall within the lines of weaker discerning power, and these are to the function of the eye like dogs in the chase which can put up the game but cannot take it. Thus these cannot take in the objects, but induce the central line of sight to turn upon them, when they have put them up. Hence the objects which are seen with these lines of sight have confused outlines.
The relative size of objects with regard to their distance from the eye (93-98).
93.
PERSPECTIVE.
Small objects close at hand and large ones at a distance, being seen within equal angles, will appear of the same size.
94.
PERSPECTIVE.
There is no object so large but that at a great distance from the eye it does not appear smaller than a smaller object near.
95.
Among objects of equal size that which is most remote from the eye will look the smallest. [Footnote: This axiom, sufficiently clear in itself, is in the original illustrated by a very large diagram, constructed like that here reproduced under No. 108.
The same idea is repeated in C. A. I a; I a, stated as follows: Infra le cose
Comments (0)