Fig. 55.—Sun-spots. From Galilei’s
Macchie Solari.
[To face p. 154.
124. The discovery of dark spots on the sun completed this series of telescopic discoveries. According to his own statement Galilei first saw them towards the end of 1610,69 but apparently paid no particular attention to them at the time; and, although he shewed them as a matter of curiosity to various friends, he made no formal announcement of the discovery till May 1612, by which time the same discovery had been made independently by Harriot (§ 118) in England, by John Fabricius (1587-? 1615) in Holland, and by the Jesuit Christopher Scheiner (1575-1650) in Germany, and had been published by Fabricius (June 1611). As a matter of fact dark spots had been seen with the naked eye long before, but had been generally supposed to be caused by the passage of Mercury in front of the sun. The presence on the sun of such blemishes as black spots, the “mutability” involved in their changes in form and position, and their formation and subsequent disappearance, were all distasteful to the supporters of the old views, according to which celestial bodies were perfect and unchangeable. The fact, noticed by all the early observers, that the spots appeared to move across the face of the sun from the eastern to the western side (i.e. roughly from left to right, as seen at midday by an observer in our latitudes), gave at first sight countenance to the view, championed by Scheiner among others, that the spots might really be small planets revolving round the sun, and appearing as dark objects whenever they passed between the sun and the observer. In three letters to his friend Welser, a merchant prince of Augsburg, written in 1612 and published in the following year,70 Galilei, while giving a full account of his observations, gave a crushing refutation of this view; proved that the spots must be on or close to the surface of the sun, and that the motions observed were exactly such as would result if the spots were attached to the sun, and it revolved on an axis in a period of about a month; and further, while disclaiming any wish to speak confidently, called attention to several of their points of resemblance to clouds.
One of his arguments against Scheiner’s views is so simple and at the same time so convincing, that it may be worth while to reproduce it as an illustration of Galilei’s method, though the controversy itself is quite dead.
Galilei noticed, namely, that while a spot took about fourteen days to cross from one side of the sun to the other, and this time was the same whether the spot passed through the centre of the sun’s disc, or along a shorter path at some distance from it, its rate of motion was by no means uniform, but that the spot’s motion always appeared much slower when near the edge of the sun than when near the centre. This he recognised as an effect of foreshortening, which would result if, and only if, the spot were near the sun.
If, for example, in the figure, the circle represent a section of the sun by a plane through the observer at O, and A, B, C, D, E be points taken at equal distances along the surface of the sun, so as to represent the positions of an object on the sun at equal intervals of time, on the assumption that the sun revolves uniformly, then the apparent motion from A to B, as seen by the observer at O, is measured by the angle A O B, and is obviously much less than that from D to E, measured by the angle D O E, and consequently an object attached to the sun must appear to move more slowly from A to B, i.e. near the sun’s edge, than from D to E, near the centre. On the other hand, if the spot be a body revolving round the sun at some distance from it, e.g. along the dotted circle c d e, then if c, d, e be taken at equal distances from one another, the apparent motion from c to d, measured again by the angle c O d, is only very slightly less than that from d to e, measured by the angle d O e. Moreover, it required only a simple calculation, performed by Galilei in several cases, to express these results in a numerical shape, and so to infer from the actual observations that the spots could not be more than a very moderate distance from the sun. The only escape from this conclusion was by the assumption that the spots, if they were bodies revolving round the sun, moved irregularly, in such a way as always to be moving fastest when they happened to be between the centre of the sun and the earth, whatever the earth’s position might be at the time, a procedure for which, on the one hand, no sort of reason could be given, and which, on the other, was entirely out of harmony with the uniformity to which mediæval astronomy clung so firmly.
Fig. 56.—Galilei’s proof that sun-spots are not planets.
The rotation of the sun about an axis, thus established, might evidently have been used as an argument in support of the view that the earth also had such a motion, but, as far as I am aware, neither Galilei nor any contemporary noticed the analogy. Among other facts relating to the spots observed by Galilei were the greater darkness of the central parts, some of his drawings (see fig. 55) shewing, like most modern drawings, a fairly well-marked line of division between the central part (or umbra) and the less dark fringe (or penumbra) surrounding it; he noticed also that spots frequently appeared in groups, that the members of a group changed their positions relatively to one another, that individual spots changed their size and shape considerably during
Comments (0)