Problems of Life and Mind. Second series - George Henry Lewes (thriller books to read txt) 📗
- Author: George Henry Lewes
- Performer: -
Book online «Problems of Life and Mind. Second series - George Henry Lewes (thriller books to read txt) 📗». Author George Henry Lewes
Following Bidder and Kupffer, the Dorpat school proclaimed the whole of the gray substance of the posterior half of the spinal cord to be connective tissue; and Blessig maintained that the whole of the retina, except the optic fibres, was connective tissue.161 Even those anatomists who regarded this as exaggerated, admitted that connective tissue largely enters into the gray substance, especially if the granular ground substance be reckoned as connective, the nerve-cells being very sparse in the posterior region. Be it so. Let us admit that the gray matter of the frog’s spinal cord is mainly composed of neuroglia, in which a very few multipolar nerve-cells are embedded. What must our conclusion be? Why, that since this spinal cord is proved to be a centre of energetic and manifold reflex actions—even to the extent of forcing many investigators to attribute sensation and volition to it—this is proof that connective tissue does the work of nerve-tissue, and that the neuroglia is more important than nerve-cells!
Three hypotheses are maintainable—1°. The neuroglia is the amorphous ground-substance of undeveloped tissue (neuroplasm) out of which the cells and fibres of nerve-tissue and connective tissue are evolved. 2°. It is the product of dissolved nerve cells and fibres. 3°. It is the undeveloped stage of connective tissue. For physiological purposes we may adopt any one of these views, provided we keep firm hold of the fact that the neuroglia is an essential element, and in the centres a dominant element. To make this clear, however, we must inquire more closely into the relations of the three elements, nerve-cells, fibres, and neuroglia.
THE RELATIONS OF THE ORGANITES.133. In enumerating among the obstacles to research the tendency to substitute hypothetic deductions in place of objective facts, I had specially in my mind the wide-reaching influence of the reigning theories of the nerve-cell. Had we a solidly established theory of the cell, equivalent, say, to our theory of gas-pressure, we should still need caution in allowing it to override exact observation; but insecure as our data are, and hypothetical as are the inferences respecting the part played by the cell, the reliance placed on deductions from such premises is nothing less than superstition. Science will take a new start when the whole question is reinvestigated on a preliminary setting aside of all that has been precipitately accepted respecting the office of the cell. This exercise of the imagination, even should the reigning theories subsequently be confirmed, would not fail to bring many neglected facts into their rightful place.
I am old enough to remember when the cell held a very subordinate position in Neurology, and now my meditations have led me to return, if not to the old views of the cell, at least to something like the old estimate of its relative importance. Its existence was first brought prominently forward by Ehrenberg in 1834, who described its presence in the sympathetic ganglia; and by Remak in 1837, who described it in the spinal ganglia. For some time afterwards the ganglia and centres were said to contain irregular masses of vesicular matter which were looked on as investing the fibres; what their office was, did not appear. But there rapidly arose the belief that the cells were minute batteries in which “nerve-force” was developed, the fibres serving merely as conductors. Once started on this track, Hypothesis had free way, and a sort of fetichistic deification of the cell invested it with miraculous powers. In many works of repute we meet with statements which may fitly take their place beside the equally grave statements made by savages respecting the hidden virtues of sticks and stones. We find the nerve-cells credited with “metabolic powers,” which enable them to “spiritualize impressions, and materialize ideas,” to transform sensations into movements, and elaborate sensations into thoughts; not only have they this “remarkable aptitude of metabolic local action,” they can also “act at a distance.”162 The savage believes that one pebble will cure diseases, and another render him victorious in war; and there are physiologists who believe that one nerve-cell has sensibility, another motricity, a third instinct, a fourth emotion, a fifth reflexion: they do not say this in so many words, but they assign to cells which differ only in size and shape, specific qualities. They describe sensational, emotional, ideational, sympathetic, reflex, and motor-cells; nay, Schröder van der Kolk goes so far as to specify hunger-cells and thirst-cells.163 With what grace can these writers laugh at Scholasticism?
134. The hypothesis of the nerve-cell as the fountain of nerve-force is supported by the gratuitous hypothesis of cell-substance having greater chemical tension and molecular instability than nerve-fibre. No evidence has been furnished for this; indeed the only experimental evidence bearing on this point, if it has any force, seems directly adverse to the hypothesis. I allude to the experiments of Wundt, which show that the faint stimulus capable of moving a muscle when applied directly to its nerve, must be increased if the excitation has to pass through the cells by stimulation of the sensory nerve.164 Wundt interprets this as proving that the cells retard every impulse, whereby they are enabled to store up latent force. The cells have thus the office of locks in a canal, which cause the shallow stream to deepen at particular places. I do not regard this interpretation as satisfactory; but the fact at any rate seems to prove that so far from the cells manifesting greater instability than the fibres, they manifest less.
135. The hypothesis of nerve-force being developed in the ganglia, gradually assumed a more precise expression when the nerve-cells were regarded as the only important elements of a ganglion. It has become the foundation-stone of Neurology, therefore very particular care should be taken to make sure that this foundation rests on clear and indisputable evidence. Instead of that, there is absolutely no evidence on which it can rest; and there is much evidence decidedly opposed to it. Neither structure nor experiment points out the cells as the chief agents in neural processes. Let us consider these.
Fig. 22 shows the contents of a molluscan ganglion which has been teased out with needles.
Comments (0)