All About Coffee - William H. Ukers (best novel books to read .TXT) 📗
- Author: William H. Ukers
- Performer: -
Book online «All About Coffee - William H. Ukers (best novel books to read .TXT) 📗». Author William H. Ukers
By means of careful work, Grafe[153] came closer to ascertaining the origin of the fugacious aromatic materials. His work with normal, caffein-free coffee and with Thum's purified coffee led him to state that a part of these substances was derived from the crude fiber, probably from the hemi-cellulose of the thick endosperm cells. Sayre[154] makes the most plausible proposal regarding the origin of caffeol. He considers the roasting of coffee as a destructive distillation process, summarizing the results, briefly, as the production of furfuraldehyde from the carbohydrates, acrolein from the fats, catechol and pyrogallol from the tannins, and ammonia, amins, and pyrrols from the proteins. The products of roasting inter-react to produce many compounds of varying degrees of complexity and toxicity.
The great difficulty which arises in the attempt to identify the aromatic constituents of coffee is that the caffeols of no two coffees may be said to be the same. The reason for this is apparent; for the green coffees themselves vary in composition, and those of the same constitution are not roasted under identical conditions. Therefore, it is not to be expected that the decomposition products formed by the action of the different greens would be the same. Also, these volatile products occur in the roasted coffee in such a small amount that the ascertaining of their percentage relationship and the recognition of all that are present are not possible with the methods of analysis at present at our disposal. Until better analytical procedures have been developed we can not hope to establish a chemical basis for the grading of coffees from this standpoint.
Coffee Oil and Fat
It is well to distinguish between the "coffee oils," as they are termed by the trade, and true coffee oil. In speaking of the qualities of coffee, connoisseurs frequently use erroneous terms, particularly when they designate certain of the flavoring and aromatic constituents of coffee as "oils" or "essential oils." Coffee does not contain any essential oils, the aromatic constituent corresponding to essential oil in coffee being caffeol, a complex which is water-soluble, a property not possessed by any true oil. True, the oil when isolated from roasted coffee does possess, before purification, considerable of the aromatic and flavoring constituents of coffee. They are, however, no part of the coffee fat, but are held in it no doubt by an enfleurage action in much the same way that perfumes of roses, etc., are absorbed and retained by fats and oils in the commercial preparation of pomades and perfumes. This affinity of the coffee oil for caffeol assists in the retention of aromatic substances by the whole roasted bean. However, upon extraction of ground roasted coffee with water, the caffeol shows a preferential solubility in water, and is dissolved out from the oil, going into the brew.
The true oil of coffee has been investigated to a fair degree and has been found to be inodorous when purified. Analysis of green and roasted coffees shows them to possess between 12 percent and 20 percent fat. Warnier[155] extracted ground unroasted coffee with petroleum ether, washed the extract with water, and distilled off the solvent, obtaining a yellow-brownish oil possessing a sharp taste. From his examination of this oil he reported these constants: d24–5, 0.942; refraction at 25°, 81.5; solidifying point, 6° to 5°; melting point, 8° to 9°; saponification number, 177.5; esterification number, 166.7; acid number, 6.2; acetyl number, 0; iodin number, 84.5 to 86.3. Meyer and Eckert[156] carefully purified coffee oil and saponified it with Li2O in alcohol. In the saponifiable portion, glycerol was the only alcohol present, the acids being carnaubic, 10 percent; daturinic acid, 1 to 1.5 percent; palmitic acid, 25 to 28 percent; capric acid, 0.5 percent; oleic acid, 2 percent, and linoleic acid, 50 percent. The unsaponifiable wax amounted to 21.2 percent, was nitrogen-free, gave a phytostearin reaction, and saponification and oxidation indicated that it was probably a tannol carnaubate. Von-Bitto[157] examined the fat extracted from the inner husk of the coffee berry and found it to be faint yellow in color, and to solidify only gradually after melting. Upon analysis, it showed: saponification value, 141.2; palmitic acid, 37.84 percent, and glycerids as tripalmitin, 28.03 percent.
Carbohydrates of the Coffee Berry
There has been considerable diversity of opinion regarding the sugar of coffee. Bell believed the sugar to be of a peculiar species allied to melezitose, but Ewell,[158] G.L. Spencer, and others definitely proved the presence of sucrose in coffee. In fat-free coffee 6 percent of sucrose was found extractable by 70 percent alcohol. Baker[159] claimed that manno-arabinose, or manno-xylose, formed one of the most important constituents of the coffee-berry substance and yielded mannose on hydrolysis. Schultze and Maxwell state that raw coffee contains galactan, mannan, and pentosans, the latter present to the extent of 5 percent in raw and 3 percent in roasted coffee. By distilling coffee with hydrochloric acid Ewell obtained furfurol equivalent to 9 percent pentose. He also obtained a gummy substance which, on hydrolysis, gave rise to a reducing sugar; and as it gave mucic acid and furfurol on oxidation, he concluded that it was a compound of pentose and galactose. In undressed Mysore coffee Commaille[160] found 2.6 percent of glucose and no dextrin. This claim of the presence of glucose in coffee was substantiated by the work of Hlasiwetz,[161] who resolved a caffetannic acid, which he had isolated, into glucose and a peculiar crystallizable acid, C8H8O4, which he named caffeic acid.
The starch content of coffee is very low. Cereals may readily be detected and identified in coffee mixtures by the presence and characteristics of their starch, in view of the fact that coffee (chicory, too) is practically free from starch. On this score it is inadvisable for diabetics to use any of the many cereal substitutes for coffee. It is pertinent to note in this connection that persons suffering from diabetes may sweeten their coffee with saccharin (1⁄2 to 1 grain per cup) or glycerol, thus obtaining perfect satisfaction without endangering their health.
The cellulose in coffee is of a very hard and horny character in the green bean, but it is made softer and more brittle during the process of roasting. It is rather difficult to define under the microscope, particularly after roasting, even though the chief characteristics of the cellular tissue are more or less retained. Coffee cellulose gives a blue color with sulphuric acid and iodin, and is dissolved by an ammoniacal solution of copper oxid. Even after roasting, remnants of the silver skin are always present, the structure of which, a thin membrane with adherent, thick-walled, spindle-shaped, hollow cells, is peculiar to coffee.
The Chemistry of Roasting
The effect of the heat in the roasting of coffee is largely evidenced as a destructive distillation and also as a partial dehydration. At the same time, oxidizing and reducing reactions probably occur within the bean, as well as some polymerization and inter-reactions.
A loss of water is to be expected as the natural outcome of the application of heat; and analyses show that the moisture content of raw coffee varies from 8 to 14 percent, while after roasting it rarely exceeds 3 percent, and frequently falls as low as 0.5 percent. The loss of the original water content of the green bean is not the only moisture loss; for many of the constituents of coffee, notably the carbohydrates, are decomposed upon heating to give off water, so that analysis before and after roasting is no direct indication of the exact amount of water driven off in the process. If it be desired to ascertain this quantity accurately, catching of the products which are driven off and determination of their water content becomes necessary.
The carbohydrates both dehydrate and decompose. The result of the dehydration is the formation of caramel and related products, which comprise the principal coloring matters in coffee infusion. That portion of the carbohydrates known as pentosans gives rise to furfuraldehyde, one of the important components of caffeol.
The effect of roasting upon the fat content of the beans is to reduce its actual weight, but not to change appreciably the percentage present, since the decrease in quantity keeps pace fairly well with the shrinkage. Some of the more volatile fatty acids are driven off, and the fats break down to give a larger percentage of free fatty acids, some light esters, acrolein, and formic acid. If the roast be a very heavy one, or is brought up too rapidly, the fat will come to the surface, through breaking of the fat cells, with a decided alteration in the chemical nature of the fat and with pronounced expansion and cracking.
Decomposition of the caffein acid-salt and considerable sublimation of the caffein also occur. The majority of the caffein undergoes this volatilization unchanged, but a portion of it is probably oxidized with the formation of ammonia, methylamin, di-methylparabanic acid, and carbon dioxid. This reaction partly explains why the amount of caffein recovered from the roaster flues is not commensurate with the amount lost from the roasting coffee; although incomplete condensation is also an important factor. Microscopic examination of the roasted beans will show occasional small crystals of caffein in the indentations on the surface, where they have been deposited during the cooling process.
The compound, or compounds, known as "caffetannic acid" are probably the source of catechol, as the proteins are of ammonia, amins, and pyrrols. The crude fiber and other unnamed constituents of the raw beans react analogously to similar compounds in the destructive distillation of wood, giving rise to acetone, various fatty acids, carbon dioxid and other uncondensable gases, and many compounds of unknown identity.
During the course of roasting and subsequent cooling these decomposition products probably interact and polymerize to form aromatic tar-like materials and other complexes which play an important rôle among the delicate flavors of coffee. In fact, it is not unlikely that these reactions continue throughout the storage time after roasting, and that upon them the deterioration of roasted coffee is largely dependent. Speculation upon what complex compounds are thus formed offers much attraction. A notable one by Sayre[162] postulates the reaction between acrolein and ammonia to give methyl pyridin, which in turn with furfurol forms furfurol vinyl pyridin. This upon reduction would produce the alkaloid, conin, traces of which have been found in coffee.
Although furfuraldehyde is the natural decomposition product of pentosans, furfuryl alcohol is the main furane body of coffee aroma. This would indicate that active reducing conditions prevail within the bean during roasting; and the further fact that carbon monoxid is given off during roasting makes this seem quite probable. If one admits that caffetannic acid exists in the green bean; that upon oxidation it gives viridic acid; and that it is concentrated in the outer layers of the bean, as certain investigators have claimed, then there is chemical proof of the existence of oxidizing conditions about the exterior of the bean. In any event, however, the fact that oxidizing conditions predominate on the external portion of the bean is obvious. Accordingly, our meager knowledge of the chemistry of roasting indicates that while the external layers of the roasting beans are subjected to oxidizing conditions, reducing ones exist in the interior. Future experimentation will, no doubt, prove this to be the case.
Attempts have been made to retain in the beans the volatile products, which normally escape, both by coating previous to roasting[163] and by conducting the process under pressure.[164] However, the results so obtained were not practical, since the
Comments (0)