Time and Tide - Sir Robert Stawell Ball (best fiction books to read TXT) 📗
- Author: Sir Robert Stawell Ball
Book online «Time and Tide - Sir Robert Stawell Ball (best fiction books to read TXT) 📗». Author Sir Robert Stawell Ball
be shown, too, that to keep the total spin right, the energy of the earth would have to gain more than the moon would have lost by revolving in a smaller orbit. Thus we find that the total quantity of energy in the system would be increased. This would lead to the absurd result that the action of the tides manufactured energy in our system. Of course, such a doctrine cannot be true; it would amount to a perpetual motion! We might as well try to get a steam-engine which would produce enough heat by friction not only to supply its own boilers, but to satisfy all the thermal wants of the whole parish. We must therefore adopt the other alternative. The tides do not draw their energy from the moon; they draw it from the store possessed by the earth in virtue of its rotation.
We can now state the end of this rather long discussion in a very simple and brief manner. Energy can only be yielded by the earth at the expense of some of the speed of its rotation. The tides must therefore cause the earth to revolve more slowly; in other words, _the tides are increasing the length of the day_.
The earth therefore loses some of its velocity of rotation; consequently it does less than its due share of the total quantity of spin, and an increased quantity of spin must therefore be accomplished by the moon; but this can only be done by an enlargement of its orbit. Thus there are two great consequences of the tides in the earth-moon system--the days are getting longer, the moon is receding further.
These points are so important that I shall try and illustrate them in another way, which will show, at all events, that one and both of these tidal phenomena commend themselves to our common sense. Have we not shown how the tides in their ebb and flow are incessantly producing friction, and have we not also likened the earth to a great wheel? When the driver wants to stop a railway train the brakes are put on, and the brake is merely a contrivance for applying friction to the circumference of a wheel for the purpose of checking its motion. Or when a great weight is being lowered by a crane, the motion is checked by a band which applies friction on the circumference of a wheel, arranged for the special purpose. Need we then be surprised that the friction of the tides acts like a brake on the earth, and gradually tends to check its mighty rotation? The progress of lengthening the day by the tides is thus readily intelligible. It is not quite so easy to see why the ebbing and the flowing of the tide on the earth should actually have the effect of making the moon to retreat; this phenomenon is in deference to a profound law of nature, which tells us that action and reaction are equal and opposite to each other. If I might venture on a very homely illustration, I may say that the moon, like a troublesome fellow, is constantly annoying the earth by dragging its waters backward and forward by means of tides; and the earth, to free itself from this irritating interference, tries to push off the aggressor and to make him move further away.
Another way in which we can illustrate the retreat of the moon as the inevitable consequence of tidal friction is shown in the adjoining figure, in which the large body E represents the earth, and the small body M the moon. We may for simplicity regard the moon as a point, and as this attracts each particle of the earth, the total effect of the moon on the earth may be represented by a single force. By the law of equality of action and reaction, the force of the earth on the moon is to be represented by an equal and opposite force. If there were no tides then the moon's force would of course pass through the earth's centre; but as the effect of the moon is to slacken the earth's rotation, it follows that the total force does not exactly pass through the line of the earth's centre, but a little to one side, in order to pull the opposite way to that in which the earth is turning, and thus bring down its speed. We may therefore decompose the earth's total force on the moon into two parts, one of which tends directly towards the earth's centre, while the other acts tangentially to the moon's orbit. The central force is of course the main guiding power which keeps the moon in its path; but the incessant tangential force constantly tends to send the moon out further and further, and thus the growth of its orbit can be accounted for.
We therefore conclude finally, that the tides are making the day longer and sending the moon away further. It is the development of the consequences of these laws that specially demands our attention in these lectures. We must have the courage to look at the facts unflinchingly, and deduce from them all the wondrous consequences they involve. Their potency arises from a characteristic feature--they are unintermitting. Most of the great astronomical changes with which we are ordinarily familiar are really periodic: they gradually increase in one direction for years, for centuries, or for untold ages; but then a change comes, and the increase is changed into a decrease, so that after the lapse of becoming periods the original state of things is restored. Such periodic phenomena abound in astronomy. There is the annual fluctuation of the seasons; there is the eighteen or nineteen year period of the moon; there is the great period of the precession of the equinoxes, amounting to twenty-six thousand years; and then there is the stupendous Annus Magnus of hundreds of thousands of years, during which the earth's orbit itself breathes in and out in response to the attraction of the planets. But these periodic phenomena, however important they may be to us mere creatures of a day, are insignificant in their effects on the grand evolution through which the celestial bodies are passing. The really potent agents in fashioning the universe are those which, however slow or feeble they may seem to be, are still incessant in their action. The effect which a cause shall be competent to produce depends not alone upon the intensity of that cause, but also upon the time during which it has been in operation. From the phenomena of geology, as well as from those of astronomy, we know that this earth and the system to which it belongs has endured for ages, not to be counted by scores of thousands of years, or, as Prof. Tyndall has so well remarked, "Not for six thousand years, nor for sixty thousand years, nor six hundred thousand years, but for aeons of untold millions." Those slender agents which have devoted themselves unceasingly to the accomplishment of a single task may in this long lapse of time have accomplished results of stupendous magnitude. In famed stalactite caverns we are shown a colossal figure of crystal extending from floor to roof, and the formation of that column is accounted for when we see a tiny drop falling from the roof above to the floor beneath. A lifetime may not suffice for that falling drop to add an appreciable increase to the stalactite down which it trickles, or to the growing stalagmite on which it falls; but when the operation has been in progress for immense ages, it is capable of the formation of the stately column. Here we have an illustration of an influence which, though apparently trivial, acquires colossal significance when adequate time is afforded. It is phenomena of this kind which the student of nature should most narrowly watch, for they are the real architects of the universe.
The tidal consequences which we have already demonstrated are emphatically of this non-periodic class--the day is always lengthening, the moon is always retreating. To-day is longer than yesterday; to-morrow will be longer than to-day. It cannot be said that the change is a great one; it is indeed too small to be appreciable even by our most delicate observations. In one thousand years the alteration in the length of a day is only a small fraction of a second; but what may be a very small matter in one thousand years can become a very large one in many millions of years. Thus it is that when we stretch our view through immense vistas of time past, or when we look forward through immeasurable ages of time to come, the alteration in the length of the day will assume the most startling proportions, and involve the most momentous consequences.
Let us first look back. There was a time when the day, instead of being the twenty-four hours we now have, must have been only twenty-three hours, How many millions of years ago that was I do not pretend to say, nor is the point material for our argument; suffice it to say, that assuming, as geology assures us we may assume, the existence of these aeons of millions of years, there was once a time when the day was not only one hour shorter, but was even several hours less than it is at present. Nor need we stop our retrospect at a day of even twenty, or fifteen, or ten hours long; we shall at once project our glance back to an immeasurably remote epoch, at which the earth was spinning round in a time only one sixth or even less of the length of the present day. There is here a reason for our retrospect to halt, for at some eventful period, when the day was about three or four hours long, the earth must have been in a condition of a very critical kind.
It is well known that fearful accidents occasionally happen where large grindstones are being driven at a high speed. The velocity of rotation becomes too great for the tenacity of the stone to withstand the stress; a rupture takes place, the stone flies in pieces, and huge fragments are hurled around. For each particular grindstone there is a certain special velocity depending upon its actual materials and character, at which it would inevitably fly in pieces. I have once before likened our earth to a wheel; now let me liken it to a grindstone. There is therefore a certain critical velocity of rotation for the earth at which it would be on the brink of rupture. We cannot exactly say, in our ignorance of the internal constitution of the earth, what length of day would be the shortest possible for our earth to have consistently with the preservation of its integrity; we may, however, assume that it will be about three or four hours, or perhaps a little less than three. The exact amount, however, is not really very material to us; it would be sufficient for our argument to assert that there is a certain minimum length of day for which the earth can hold together. In our retrospect, therefore, through the abyss of time past our view must be bounded by that state of the earth when it is revolving in this critical period. With what happened before that we shall not at present concern ourselves. Thus we look back to a time at the beginning of the present order of things, when the day was only some three or four hours long.
Let us now look at the moon, and examine where it must have been during these past ages. As the moon is gradually getting further and further from us at present, so, looking back into past time, we find that the moon was nearer and nearer to the earth
We can now state the end of this rather long discussion in a very simple and brief manner. Energy can only be yielded by the earth at the expense of some of the speed of its rotation. The tides must therefore cause the earth to revolve more slowly; in other words, _the tides are increasing the length of the day_.
The earth therefore loses some of its velocity of rotation; consequently it does less than its due share of the total quantity of spin, and an increased quantity of spin must therefore be accomplished by the moon; but this can only be done by an enlargement of its orbit. Thus there are two great consequences of the tides in the earth-moon system--the days are getting longer, the moon is receding further.
These points are so important that I shall try and illustrate them in another way, which will show, at all events, that one and both of these tidal phenomena commend themselves to our common sense. Have we not shown how the tides in their ebb and flow are incessantly producing friction, and have we not also likened the earth to a great wheel? When the driver wants to stop a railway train the brakes are put on, and the brake is merely a contrivance for applying friction to the circumference of a wheel for the purpose of checking its motion. Or when a great weight is being lowered by a crane, the motion is checked by a band which applies friction on the circumference of a wheel, arranged for the special purpose. Need we then be surprised that the friction of the tides acts like a brake on the earth, and gradually tends to check its mighty rotation? The progress of lengthening the day by the tides is thus readily intelligible. It is not quite so easy to see why the ebbing and the flowing of the tide on the earth should actually have the effect of making the moon to retreat; this phenomenon is in deference to a profound law of nature, which tells us that action and reaction are equal and opposite to each other. If I might venture on a very homely illustration, I may say that the moon, like a troublesome fellow, is constantly annoying the earth by dragging its waters backward and forward by means of tides; and the earth, to free itself from this irritating interference, tries to push off the aggressor and to make him move further away.
Another way in which we can illustrate the retreat of the moon as the inevitable consequence of tidal friction is shown in the adjoining figure, in which the large body E represents the earth, and the small body M the moon. We may for simplicity regard the moon as a point, and as this attracts each particle of the earth, the total effect of the moon on the earth may be represented by a single force. By the law of equality of action and reaction, the force of the earth on the moon is to be represented by an equal and opposite force. If there were no tides then the moon's force would of course pass through the earth's centre; but as the effect of the moon is to slacken the earth's rotation, it follows that the total force does not exactly pass through the line of the earth's centre, but a little to one side, in order to pull the opposite way to that in which the earth is turning, and thus bring down its speed. We may therefore decompose the earth's total force on the moon into two parts, one of which tends directly towards the earth's centre, while the other acts tangentially to the moon's orbit. The central force is of course the main guiding power which keeps the moon in its path; but the incessant tangential force constantly tends to send the moon out further and further, and thus the growth of its orbit can be accounted for.
We therefore conclude finally, that the tides are making the day longer and sending the moon away further. It is the development of the consequences of these laws that specially demands our attention in these lectures. We must have the courage to look at the facts unflinchingly, and deduce from them all the wondrous consequences they involve. Their potency arises from a characteristic feature--they are unintermitting. Most of the great astronomical changes with which we are ordinarily familiar are really periodic: they gradually increase in one direction for years, for centuries, or for untold ages; but then a change comes, and the increase is changed into a decrease, so that after the lapse of becoming periods the original state of things is restored. Such periodic phenomena abound in astronomy. There is the annual fluctuation of the seasons; there is the eighteen or nineteen year period of the moon; there is the great period of the precession of the equinoxes, amounting to twenty-six thousand years; and then there is the stupendous Annus Magnus of hundreds of thousands of years, during which the earth's orbit itself breathes in and out in response to the attraction of the planets. But these periodic phenomena, however important they may be to us mere creatures of a day, are insignificant in their effects on the grand evolution through which the celestial bodies are passing. The really potent agents in fashioning the universe are those which, however slow or feeble they may seem to be, are still incessant in their action. The effect which a cause shall be competent to produce depends not alone upon the intensity of that cause, but also upon the time during which it has been in operation. From the phenomena of geology, as well as from those of astronomy, we know that this earth and the system to which it belongs has endured for ages, not to be counted by scores of thousands of years, or, as Prof. Tyndall has so well remarked, "Not for six thousand years, nor for sixty thousand years, nor six hundred thousand years, but for aeons of untold millions." Those slender agents which have devoted themselves unceasingly to the accomplishment of a single task may in this long lapse of time have accomplished results of stupendous magnitude. In famed stalactite caverns we are shown a colossal figure of crystal extending from floor to roof, and the formation of that column is accounted for when we see a tiny drop falling from the roof above to the floor beneath. A lifetime may not suffice for that falling drop to add an appreciable increase to the stalactite down which it trickles, or to the growing stalagmite on which it falls; but when the operation has been in progress for immense ages, it is capable of the formation of the stately column. Here we have an illustration of an influence which, though apparently trivial, acquires colossal significance when adequate time is afforded. It is phenomena of this kind which the student of nature should most narrowly watch, for they are the real architects of the universe.
The tidal consequences which we have already demonstrated are emphatically of this non-periodic class--the day is always lengthening, the moon is always retreating. To-day is longer than yesterday; to-morrow will be longer than to-day. It cannot be said that the change is a great one; it is indeed too small to be appreciable even by our most delicate observations. In one thousand years the alteration in the length of a day is only a small fraction of a second; but what may be a very small matter in one thousand years can become a very large one in many millions of years. Thus it is that when we stretch our view through immense vistas of time past, or when we look forward through immeasurable ages of time to come, the alteration in the length of the day will assume the most startling proportions, and involve the most momentous consequences.
Let us first look back. There was a time when the day, instead of being the twenty-four hours we now have, must have been only twenty-three hours, How many millions of years ago that was I do not pretend to say, nor is the point material for our argument; suffice it to say, that assuming, as geology assures us we may assume, the existence of these aeons of millions of years, there was once a time when the day was not only one hour shorter, but was even several hours less than it is at present. Nor need we stop our retrospect at a day of even twenty, or fifteen, or ten hours long; we shall at once project our glance back to an immeasurably remote epoch, at which the earth was spinning round in a time only one sixth or even less of the length of the present day. There is here a reason for our retrospect to halt, for at some eventful period, when the day was about three or four hours long, the earth must have been in a condition of a very critical kind.
It is well known that fearful accidents occasionally happen where large grindstones are being driven at a high speed. The velocity of rotation becomes too great for the tenacity of the stone to withstand the stress; a rupture takes place, the stone flies in pieces, and huge fragments are hurled around. For each particular grindstone there is a certain special velocity depending upon its actual materials and character, at which it would inevitably fly in pieces. I have once before likened our earth to a wheel; now let me liken it to a grindstone. There is therefore a certain critical velocity of rotation for the earth at which it would be on the brink of rupture. We cannot exactly say, in our ignorance of the internal constitution of the earth, what length of day would be the shortest possible for our earth to have consistently with the preservation of its integrity; we may, however, assume that it will be about three or four hours, or perhaps a little less than three. The exact amount, however, is not really very material to us; it would be sufficient for our argument to assert that there is a certain minimum length of day for which the earth can hold together. In our retrospect, therefore, through the abyss of time past our view must be bounded by that state of the earth when it is revolving in this critical period. With what happened before that we shall not at present concern ourselves. Thus we look back to a time at the beginning of the present order of things, when the day was only some three or four hours long.
Let us now look at the moon, and examine where it must have been during these past ages. As the moon is gradually getting further and further from us at present, so, looking back into past time, we find that the moon was nearer and nearer to the earth
Free e-book «Time and Tide - Sir Robert Stawell Ball (best fiction books to read TXT) 📗» - read online now
Similar e-books:
Comments (0)