bookssland.com » Nature » Astronomy for Amateurs - Camille Flammarion (ebook reader with android os TXT) 📗

Book online «Astronomy for Amateurs - Camille Flammarion (ebook reader with android os TXT) 📗». Author Camille Flammarion



1 ... 19 20 21 22 23 24 25 26 27 ... 37
Go to page:
meters. We may remember in passing that the length of the meter has been determined as, by definition, the ten-millionth part of the quarter of a celestial meridian.

Thus, while rotating upon itself, the Earth spins round the Sun, along a vast orbit traced at 149,000,000 kilometers (93,000,000 miles) from the central focus, a sensibly elliptical orbit, as we have already pointed out. It is a little nearer the Sun on January 1st than on July 1st, at its perihelion (peri, near, helios, Sun), than at its aphelion (apo, far, helios, Sun). The difference = 6,000,000 kilometers (3,720,000 miles), and its velocity is a little greater at perihelion than at aphelion.

This second motion produces the year. It is accomplished in three hundred and sixty-five days, six hours, nine minutes, nine seconds. Such is the complete revolution of our planet round the orb of day. It has received the name of sidereal year. But this is not how we calculate the year in practical life. The civil year, known also as the tropical year, is not equivalent to the Earth's revolution, because a very slow gyratory motion, called "the precession of the equinoxes," the cycle of which occupies 25,765 years, drags the spring equinox back some twenty minutes in each year.

The civil year is, accordingly, three hundred and sixty-five days, five hours, forty-eight minutes, forty-six seconds.

In order to simplify the calendar, this accumulating fraction of five hours, forty-eight minutes, forty-six seconds (about a quarter day) is added every four years to a bissextile year (leap-year), and thus we have uneven years of three hundred and sixty-five, and three hundred and sixty-six days. Every year of which the figure is divisible by four is a leap-year. By adding a quarter day to each year, there is a surplus of eleven minutes, fourteen seconds. These are subtracted every hundred years by not taking as bissextile those secular years of which the radical is not divisible by four. The year 1600 was leap-year: 1700, 1800, and 1900 were not; 2000 will be. The agreement between the calendar and nature has thus been fairly perfect, since the establishment of the Gregorian Calendar in 1582.

Since the terrestrial orbit measures not less than 930,000,000 kilometers (576,600,000 miles), which must be traversed in a year, the Earth flies through Space at 2,544,000 kilometers (1,577,280 miles) a day, or 106,000 kilometers (65,720 miles) an hour, or 29,500 meters (18 miles) per second on an average, a little faster at perihelion, a little slower at aphelion. This giddy course, a thousand times more rapid than the speed of an express-train, is effected without commotion, shock, or noise. Reasoning alone enables us to divine the prodigious movement that carries us along in the vast fields of the Infinite, in mid-heaven.

Returning to the calendar, it must be remarked in conclusion, that the human race has not exhibited great sense in fixing the New Year on January 1. No more disagreeable season could have been selected. And further, as the ancient Roman names of the months have been preserved, which in the time of Romulus began with March, the "seventh" month, "September," is our ninth month; October (the eighth) is the tenth; November (the ninth) has become the eleventh; and December (the tenth) has taken the place of the twelfth. Verily, we are not hard to please!

These months, again, are unequal, as every one knows. Witness the simple expedient of remembering the long and short months, by closing the left hand and counting the knobs and hollows of the fist, the former corresponding to the long months, the latter to the short: first knob = January; first hollow, February; second knob, March; and so on.[12]

Fig. 63.—To find the long and short months. Fig. 63.—To find the long and short months.

Should not the real renewal of the year coincide with the awakening of Nature, with the spring on the terrestrial hemisphere occupied by the greater portion of Humanity, with the date of March 21st? Should not the months be equalized, and their names modified? Why should we not follow the beautiful evolution dictated by the Sun and by the movement of our planet? But our poor Earth may roll on a long time yet before its inhabitants will become reasonable.

CHAPTER IX THE MOON

It is the delightful hour when all Nature pauses in the tranquil calm of the silent night.

The Sun has cast his farewell gleams upon the weary Earth. All sound is hushed. And soon the stars will shine out one by one in the bosom of the somber firmament. Opposite to the sunset, in the east, the Full Moon rises slowly, as it were calling our thoughts toward the mysteries of eternity, while her limpid night spreads over space like a dew from Heaven.

In the odorous woods, the trees are silhouetted strangely upon the sky, seeming to stretch their knotted arms toward this celestial beauty. On the river, smooth as a mirror, wherein the pale Phœbe reflects her splendor, the maidens go to seek the floating image of their future spouse. And in response to their prayers, she rends the veil of cloud that hides her from their eyes, and pours the reflection of her gentle beams upon the sleeping waters.

From all time the Moon has had the privilege of charming the gaze, and attracting the particular attention of mortals. What thoughts have not been wafted to her pale, yet luminous disk? Orb of mystery and of solitude, brooding over our silent nights, this celestial luminary is at once sad and splendid in her glacial purity, and her limpid rays provoke a reverie full of charm and melancholy. Mute witness of terrestrial destinies, her nocturnal flame watches over our planet, following it in its course as a faithful satellite.

The human eye first uplifted to the Heavens was struck, above all, with the brilliancy of this solitary globe, straying among the stars. The Moon first suggested an easy division of time into months and weeks, and the first astronomical observations were limited to the study of her phases.

Daughter of the Earth, the Moon was born at the limits of the terrestrial nebula, when our world was still no more than a vast gaseous sphere, and was detached from her at some critical period of colossal solar tide. Separating with regret from her cradle, but attached to the Earth by indissoluble ties of attraction, she rotates round us in a month, from west to east, and this movement keeps her back a little each day in relation to the stars. If we watch, evening by evening, beginning from the new moon, we shall observe that she is each night a little farther to the left, or east, than on the preceding evening. This revolution of the Moon around our planet produces the phases, and gives the measure of our months.

Fig. 64.—The Full Moon slowly rises. Fig. 64.—The Full Moon slowly rises.

During her monthly journey she always presents the same face to us. One might think that the fear of losing us had immobilized her globe, and prevented her from turning. And so we only know of her the vague sketch of a human face that has been observed through all the ages.

It seems, in fact, as though she were looking down upon us from the Heavens, the more so as the principal spots of her disk vaguely recall the aspect of a face. If we try to draw it without the aid of instruments we observe dark regions and clear regions that each interprets in his own fashion. To the author, for instance, the full Moon has the appearance represented in the following figure. The spots resemble two eyes and the sketch of a nose; resulting in a vague human figure, as indicated on the lower disk. Others see a man carrying a bundle of wood, a hare, a lion, a dog, a kangaroo, a sickle, two heads embracing, etc.[13] But generally speaking, there is a tendency to see a human figure in it.

If this appearance is helped a little by drawing, it gives the profile of a man's head fairly well sketched, and furnished with an abundant crop of hair (Fig. 66). Others go much more into detail, and draw a woman's head that is certainly too definite, like this of M. Jean Sardou (Fig. 67). Others, again, like M. Zamboni, see behind the man's profile the likeness of a young girl being embraced by him (Fig. 68). There is certainly some imagination about these. And yet, on the first suitable occasion, look at the Moon through an opera-glass, a few days after the first quarter, and you will not fail to see the masculine profile just described, and even to imagine the "kiss in the Moon."

Fig. 65.—The Moon viewed with the unaided eye. Fig. 65.—The Moon viewed with the unaided eye.



Fig. 66.—The Man's head in the Moon. Fig. 66.—The Man's head in the Moon.

These vague aspects disappear as soon as the Moon is examined with even the least powerful instruments: the spots are better defined, and the illusions of indistinct vision vanish. Compare this direct photograph of the Moon, taken by the author some years ago (Fig. 69): here is neither a human figure, man, dog, hare, nor faggot; simply deep geographical configurations, and in the lower region, a luminous point whence certain light bands spread out, some being prolonged to a considerable distance. And yet, from a little way off, does it not form the man's face above indicated?

Fig. 67.—Woman's head in the Moon. Fig. 67.—Woman's head in the Moon.

From the earliest astronomical observations made with the aid of instruments by Galileo, in 1609, people tried to find out what the dark spots could represent, and they were called seas, because water absorbs light, and reflects it less than terra firma. The Moon of itself possesses no intrinsic light, any more than our planet, and only shines by the light of the Sun that illuminates it. As it rotates round the Earth, and constantly changes its position with respect to the Sun, we see more or less of its illuminated hemisphere, and the result is the phases that every one knows so well.

Fig. 68.—The kiss in the Moon. Fig. 68.—The kiss in the Moon.



Fig. 69.—Photograph of the Moon. Fig. 69.—Photograph of the Moon.

At the commencement of each lunation, the Moon is between the Sun and the Earth, and its non-illuminated hemisphere is turned toward us. This is the New Moon, invisible to us; but two days later, the slim crescent of Diana sheds a gentle radiance upon the Earth. Gradually the crescent enlarges. When the Moon arrives at right angles with ourselves and with the Sun, half the illuminated hemisphere is presented to us. This is the first quarter. At the time of Full Moon, it is opposite the Sun, and we see the whole of the hemisphere illuminated. Then comes the decline: the brilliant disk is slightly corroded at first; it diminishes from day to day, and about a week before the New Moon our fair friend only shows her profile before she once more passes in front of the Sun: this is the last quarter.

Fig. 70.—The Moon's Phases. Fig. 70.—The Moon's Phases.

When the Moon is crescent, in the first evenings of the lunation, and after the last quarter, the rest of

1 ... 19 20 21 22 23 24 25 26 27 ... 37
Go to page:

Free e-book «Astronomy for Amateurs - Camille Flammarion (ebook reader with android os TXT) 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment