The Origin of Species - Charles Darwin (ebook audio reader txt) 📗
- Author: Charles Darwin
Book online «The Origin of Species - Charles Darwin (ebook audio reader txt) 📗». Author Charles Darwin
From these several considerations it cannot be doubted that the geological record, viewed as a whole, is extremely imperfect; but if we confine our attention to any one formation, it becomes much more difficult to understand why we do not therein find closely graduated varieties between the allied species which lived at its commencement and at its close. Several cases are on record of the same species presenting varieties in the upper and lower parts of the same formation. Thus Trautschold gives a number of instances with Ammonites, and Hilgendorf has described a most curious case of ten graduated forms of Planorbis multiformis in the successive beds of a freshwater formation in Switzerland. Although each formation has indisputably required a vast number of years for its deposition, several reasons can be given why each should not commonly include a graduated series of links between the species which lived at its commencement and close, but I cannot assign due proportional weight to the following considerations.
Although each formation may mark a very long lapse of years, each probably is short compared with the period requisite to change one species into another. I am aware that two palaeontologists, whose opinions are worthy of much deference, namely Bronn and Woodward, have concluded that the average duration of each formation is twice or thrice as long as the average duration of specific forms. But insuperable difficulties, as it seems to me, prevent us from coming to any just conclusion on this head. When we see a species first appearing in the middle of any formation, it would be rash in the extreme to infer that it had not elsewhere previously existed. So again, when we find a species disappearing before the last layers have been deposited, it would be equally rash to suppose that it then became extinct. We forget how small the area of Europe is compared with the rest of the world; nor have the several stages of the same formation throughout Europe been correlated with perfect accuracy.
We may safely infer that with marine animals of all kinds there has been a large amount of migration due to climatal and other changes; and when we see a species first appearing in any formation, the probability is that it only then first immigrated into that area. It is well known, for instance, that several species appear somewhat earlier in the palaeozoic beds of North America than in those of Europe; time having apparently been required for their migration from the American to the European seas. In examining the latest deposits, in various quarters of the world, it has everywhere been noted, that some few still existing species are common in the deposit, but have become extinct in the immediately surrounding sea; or, conversely, that some are now abundant in the neighbouring sea, but are rare or absent in this particular deposit. It is an excellent lesson to reflect on the ascertained amount of migration of the inhabitants of Europe during the glacial epoch, which forms only a part of one whole geological period; and likewise to reflect on the changes of level, on the extreme change of climate, and on the great lapse of time, all included within this same glacial period. Yet it may be doubted whether, in any quarter of the world, sedimentary deposits, including fossil remains, have gone on accumulating within the same area during the whole of this period. It is not, for instance, probable that sediment was deposited during the whole of the glacial period near the mouth of the Mississippi, within that limit of depth at which marine animals can best flourish: for we know that great geographical changes occurred in other parts of America during this space of time. When such beds as were deposited in shallow water near the mouth of the Mississippi during some part of the glacial period shall have been upraised, organic remains will probably first appear and disappear at different levels, owing to the migrations of species and to geographical changes. And in the distant future, a geologist, examining these beds, would be tempted to conclude that the average duration of life of the embedded fossils had been less than that of the glacial period, instead of having been really far greater, that is, extending from before the glacial epoch to the present day.
In order to get a perfect gradation between two forms in the upper and lower parts of the same formation, the deposit must have gone on continuously accumulating during a long period, sufficient for the slow process of modification; hence, the deposit must be a very thick one; and the species undergoing change must have lived in the same district throughout the whole time. But we have seen that a thick formation, fossiliferous throughout its entire thickness, can accumulate only during a period of subsidence; and to keep the depth approximately the same, which is necessary that the same marine species may live on the same space, the supply of sediment must nearly counterbalance the amount of subsidence. But this same movement of subsidence will tend to submerge the area whence the sediment is derived, and thus diminish the supply, whilst the downward movement continues. In fact, this nearly exact balancing between the supply of sediment and the amount of subsidence is probably a rare contingency; for it has been observed by more than one palaeontologist that very thick deposits are usually barren of organic remains, except near their upper or lower limits.
It would seem that each separate formation, like the whole pile of formations in any country, has generally been intermittent in its accumulation. When we see, as is so often the case, a formation composed of beds of widely different mineralogical composition, we may reasonably suspect that the process of deposition has been more or less interrupted. Nor
Comments (0)