bookssland.com » Other » The Origin of Species - Charles Darwin (ebook audio reader txt) 📗

Book online «The Origin of Species - Charles Darwin (ebook audio reader txt) 📗». Author Charles Darwin



1 ... 174 175 176 177 178 179 180 181 182 ... 202
Go to page:
part of its embryonic career, is active, and has to provide for itself. The period of activity may come on earlier or later in life; but whenever it comes on, the adaptation of the larva to its conditions of life is just as perfect and as beautiful as in the adult animal. In how important a manner this has acted, has recently been well shown by Sir J. Lubbock in his remarks on the close similarity of the larvae of some insects belonging to very different orders, and on the dissimilarity of the larvae of other insects within the same order, according to their habits of life. Owing to such adaptations the similarity of the larvae of allied animals is sometimes greatly obscured; especially when there is a division of labour during the different stages of development, as when the same larva has during one stage to search for food, and during another stage has to search for a place of attachment. Cases can even be given of the larvae of allied species, or groups of species, differing more from each other than do the adults. In most cases, however, the larvae, though active, still obey, more or less closely, the law of common embryonic resemblance. Cirripedes afford a good instance of this: even the illustrious Cuvier did not perceive that a barnacle was a crustacean: but a glance at the larva shows this in an unmistakable manner. So again the two main divisions of cirripedes, the pedunculated and sessile, though differing widely in external appearance, have larvae in all their stages barely distinguishable.

The embryo in the course of development generally rises in organisation. I use this expression, though I am aware that it is hardly possible to define clearly what is meant by organisation being higher or lower. But no one probably will dispute that the butterfly is higher than the caterpillar. In some cases, however, the mature animal must be considered as lower in the scale than the larva, as with certain parasitic crustaceans. To refer once again to cirripedes: the larvae in the first stage have three pairs of locomotive organs, a simple single eye, and a probosciformed mouth, with which they feed largely, for they increase much in size. In the second stage, answering to the chrysalis stage of butterflies, they have six pairs of beautifully constructed natatory legs, a pair of magnificent compound eyes, and extremely complex antennae; but they have a closed and imperfect mouth, and cannot feed: their function at this stage is, to search out by their well-developed organs of sense, and to reach by their active powers of swimming, a proper place on which to become attached and to undergo their final metamorphosis. When this is completed they are fixed for life: their legs are now converted into prehensile organs; they again obtain a well-constructed mouth; but they have no antennae, and their two eyes are now reconverted into a minute, single, simple eyespot. In this last and complete state, cirripedes may be considered as either more highly or more lowly organised than they were in the larval condition. But in some genera the larvae become developed into hermaphrodites having the ordinary structure, or into what I have called complemental males; and in the latter the development has assuredly been retrograde; for the male is a mere sack, which lives for a short time and is destitute of mouth, stomach, and every other organ of importance, excepting those for reproduction.

We are so much accustomed to see a difference in structure between the embryo and the adult, that we are tempted to look at this difference as in some necessary manner contingent on growth. But there is no reason why, for instance, the wing of a bat, or the fin of a porpoise, should not have been sketched out with all their parts in proper proportion, as soon as any part became visible. In some whole groups of animals and in certain members of other groups this is the case, and the embryo does not at any period differ widely from the adult: thus Owen has remarked in regard to cuttlefish, “there is no metamorphosis; the cephalopodic character is manifested long before the parts of the embryo are completed.” Land-shells and freshwater crustaceans are born having their proper forms, while the marine members of the same two great classes pass through considerable and often great changes during their development. Spiders, again, barely undergo any metamorphosis. The larvae of most insects pass through a worm-like stage, whether they are active and adapted to diversified habits, or are inactive from being placed in the midst of proper nutriment, or from being fed by their parents; but in some few cases, as in that of Aphis, if we look to the admirable drawings of the development of this insect, by Professor Huxley, we see hardly any trace of the vermiform stage.

Sometimes it is only the earlier developmental stages which fail. Thus, Fritz Muller has made the remarkable discovery that certain shrimp-like crustaceans (allied to Penoeus) first appear under the simple nauplius-form, and after passing through two or more zoea-stages, and then through the mysis-stage, finally acquire their mature structure: now in the whole great malacostracan order, to which these crustaceans belong, no other member is as yet known to be first developed under the nauplius-form, though many appear as zoeas; nevertheless Muller assigns reasons for his belief, that if there had been no suppression of development, all these crustaceans would have appeared as nauplii.

How, then, can we explain these several facts in embryology⁠—namely, the very general, though not universal, difference in structure between the embryo and the adult; the various parts in the same individual embryo, which ultimately become very unlike, and serve for diverse purposes, being at an early period of growth alike; the common, but not invariable, resemblance between the embryos or larvae of the most distinct species in the same class; the embryo often retaining, while within the egg or womb,

1 ... 174 175 176 177 178 179 180 181 182 ... 202
Go to page:

Free e-book «The Origin of Species - Charles Darwin (ebook audio reader txt) 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment