A System of Logic: Ratiocinative and Inductive - John Stuart Mill (best e reader for manga .txt) 📗
- Author: John Stuart Mill
- Performer: -
Book online «A System of Logic: Ratiocinative and Inductive - John Stuart Mill (best e reader for manga .txt) 📗». Author John Stuart Mill
The difficulty, therefore, in applying the methods already treated of to determine the effects of Permanent Causes, is confined to the cases in which it is impossible for us to get out of the local limits of their influence. The pendulum can be removed from the influence of the mountain, but it cannot be removed from the influence of the earth: we cannot take away the earth from the pendulum, nor the pendulum from the earth, to ascertain whether it would continue to vibrate if the action which the earth exerts upon it were withdrawn. On what evidence, then, do we ascribe its vibrations to the earth's influence? Not on any sanctioned by the Method of Difference; for one of the two instances, the negative instance, is wanting. Nor by the Method of Agreement; for though all pendulums agree in this, that during their oscillations the earth is always present, why may we not as well ascribe the phenomenon to the sun, which is equally a coexistent fact in all the experiments? It is evident that to establish even so simple a fact of causation as this, there was required some method over and above those which we have yet examined.
As another example, let us take the phenomenon Heat. Independently of all hypothesis as to the real nature of the agency so called, this fact is certain, that we are unable to exhaust any body of the whole of its heat. It is equally certain, that no one ever perceived heat not emanating from a body. Being unable, then, to separate Body and Heat, we cannot effect such a variation of circumstances as the foregoing three methods require; we cannot ascertain, by those methods, what portion of the phenomena exhibited by any body is due to the heat contained in it. If we could observe a body with its heat, and the same body entirely divested of heat, the Method of Difference would show the effect due to the heat, apart from that due to the body. If we could observe heat under circumstances agreeing in nothing but heat, and therefore not characterized also by the presence of a body, we could ascertain the effects of heat, from an instance of heat with a body and an instance of heat without a body, by the Method of Agreement; or we could determine by the Method of Difference what effect was due to the body, when the remainder which was due to the heat would be given by the Method of Residues. But we can do none of these things; and without them the application of any of the three methods to the solution of this problem would be illusory. It would be idle, for instance, to attempt to ascertain the effect of heat by subtracting from the phenomena exhibited by a body, all that is due to its other properties; for as we have never been able to observe any bodies without a portion of heat in them, effects due to that heat might form a part of the very results, which we were affecting to subtract in order that the effect of heat might be shown by the residue.
If, therefore, there were no other methods of experimental investigation than these three, we should be unable to determine the effects due to heat as a cause. But we have still a resource. Though we cannot exclude an antecedent altogether, we may be able to produce, or nature may produce for us, some modification in it. By a modification is here meant, a change in it, not amounting to its total removal. If some modification in the antecedent A is always followed by a change in the consequent a, the other consequents b and c remaining the same; or vice versâ, if every change in a is found to have been preceded by some modification in A, none being observable in any of the other antecedents; we may safely conclude that a is, wholly or in part, an effect traceable to A, or at least in some way connected with it through causation. For example, in the case of heat, though we cannot expel it altogether from any body, we can modify it in quantity, we can increase or diminish it; and doing so, we find by the various methods of experimentation or observation already treated of, that such increase or diminution of heat is followed by expansion or contraction of the body. In this manner we arrive at the conclusion, otherwise unattainable by us, that one of the effects of heat is to enlarge the dimensions of bodies; or what is the same thing in other words, to widen the distances between their particles.
A change in a thing, not amounting to its total removal, that is, a change which leaves it still the same thing it was, must be a change either in its quantity, or in some of its variable relations to other things, of which variable relations the principal is its position in space. In the previous example, the modification which was produced in the antecedent was an alteration in its quantity. Let us now suppose the question to be, what influence the moon exerts on the surface of the earth. We cannot try an experiment in the absence of the moon, so as to observe what terrestrial phenomena her annihilation would put an end to; but when we find that all the variations in the position of the moon are followed by corresponding variations in the time and place of high water, the place being always either the part of the earth which is nearest to, or that which is most remote from, the moon, we have ample evidence that the moon is, wholly or partially, the cause which determines the tides. It very commonly happens, as it does in this instance, that the variations of an effect are correspondent, or analogous, to those of its cause; as the moon moves farther towards the east, the high water point does the same: but this is not an indispensable condition; as may be seen in the same example, for along with that high water point there is at the same instant another high water point diametrically opposite to it, and which, therefore, of necessity, moves towards the west, as the moon, followed by the nearer of the tide waves, advances towards the east: and yet both these motions are equally effects of the moon's motion.
That the oscillations of the pendulum are caused by the earth, is proved by similar evidence. Those oscillations take place between equidistant points on the two sides of a line, which, being perpendicular to the earth, varies with every variation in the earth's position, either in space or relatively to the object. Speaking accurately, we only know by the method now characterized, that all terrestrial bodies tend to the earth, and not to some unknown fixed point lying in the same direction. In every twenty-four hours, by the earth's rotation, the line drawn from the body at right angles to the earth coincides successively with all the radii of a circle, and in the course of six months the place of that circle varies by nearly two hundred millions of miles; yet in all these changes of the earth's position, the line in which bodies tend to fall continues to be directed towards it: which proves that terrestrial gravity is directed to the earth, and not, as was once fancied by some, to a fixed point of space.
The method by which these results were obtained, may be termed the Method of Concomitant Variations: it is regulated by the following canon:—
Fifth Canon.
Whatever phenomenon varies in any manner whenever another phenomenon varies in some particular manner, is either a cause or an effect of that phenomenon, or is connected with it through some fact of causation.
The last clause is subjoined, because it by no means follows when two phenomena accompany each other in their variations, that the one is cause and the other effect. The same thing may, and indeed must happen, supposing them to be two different effects of a common cause: and by this method alone it would never be possible to ascertain which of the suppositions is the true one. The only way to solve the doubt would be that which we have so often adverted to, viz. by endeavouring to ascertain whether we can produce the one set of variations by means of the other. In the case of heat, for example, by increasing the temperature of a body we increase its bulk, but by increasing its bulk we do not increase its temperature; on the contrary, (as in the rarefaction of air under the receiver of an air-pump,) we generally diminish it: therefore heat is not an effect, but a cause, of increase of bulk. If we cannot ourselves produce the variations, we must endeavour, though it is an attempt which is seldom successful, to find them produced by nature in some case in which the pre-existing circumstances are perfectly known to us.
It is scarcely necessary to say, that in order to ascertain the uniform concomitance of variations in the effect with variations in the cause, the same precautions must be used as in any other case of the determination of an invariable sequence. We must endeavour to retain all the other antecedents unchanged, while that particular one is subjected to the requisite series of variations; or in other words, that we may be warranted in inferring causation from concomitance of variations, the concomitance itself must be proved by the Method of Difference.
It might at first appear that the Method of Concomitant Variations assumes a new axiom, or law of causation in general, namely, that every modification of the cause is followed by a change in the effect. And it does usually happen that when a phenomenon A causes a phenomenon a, any variation in the quantity or in the various relations of A, is uniformly followed by a variation in the quantity or relations of a. To take a familiar instance, that of gravitation. The sun causes a certain tendency to motion in the earth; here we have cause and effect; but that tendency is towards the sun, and therefore varies in direction as the sun varies in the relation of position; and moreover the tendency varies in intensity, in a certain numerical correspondence to the sun's distance from the earth, that is, according to another relation of the sun. Thus we see that there is not only an invariable connexion between the sun and the earth's gravitation, but that two of the relations of the sun, its position with respect to the earth and its distance from the earth, are invariably connected as antecedents with the quantity and direction of the earth's gravitation. The cause of the earth's gravitating at all, is simply the sun; but the cause of its gravitating with a given intensity and in a given direction, is the existence of the sun in a given direction and at a given distance. It is not strange that a modified cause, which is in truth a different cause, should produce a different effect.
Although it is for the most part true that a modification of the cause is followed by a modification of the effect, the Method of Concomitant
Comments (0)