Psychology - Robert S. Woodworth (trending books to read TXT) 📗
- Author: Robert S. Woodworth
- Performer: -
Book online «Psychology - Robert S. Woodworth (trending books to read TXT) 📗». Author Robert S. Woodworth
It is not always the most efficient mental process that is most conscious; indeed, practising an act makes it both more efficient and less conscious. It is, rather, the less efficient processes that require attention, because they require mental work to keep them going straight.
Our sixth law of attention, emerging from this introspective study, is naturally of a different style from the remainder of the list, which were objectively observed; yet it {267} is no less certain and perhaps no less significant. It may be called:
(6) The law of degrees of consciousness, and thus stated: An attentive response is conscious to a higher degree than any inattentive response made at the same time. An inattentive response may be dimly conscious or, perhaps, altogether unconscious. The less familiar the response, and the higher it stands in the scale of mental performances, the more attentive it is, and the more conscious.
The Management of AttentionAttentive observation is more trustworthy than inattentive, and also gives more facts. Attentive movement is more accurate than inattentive, and may be quicker as well. Attentive study gives quicker learning than inattentive, and at the same time fixes the facts more durably.
Shall we say, then, "Do everything attentively"? But that is impossible. We sense so many stimuli at once that we could not possibly attend to all of them. We do several things at once, and cannot give attention to them all. A skilful performance consists of many parts, and we cannot possibly give careful attention to all the parts. Attention is necessarily selective, and the best advice is, not simply to "be attentive", but to attend to the right things.
In observation, the best plan is obviously to decide beforehand exactly what needs to be observed, and then to focus attention on this precise point. That is the principle underlying the remarkably sure and keen observation of the scientist. Reading may be called a kind of observation, since the reader is looking for what the author has to tell; and the rule that holds for other observation holds also for reading. That is to say that the reader finds the most when he knows just what he is looking for. We can learn {268} something here from story-reading, which is the most efficient sort of reading, in the sense that you get the point of the story better than that of more serious reading matter, the reason being that attention is always pressing forward in the story, looking for something very definite. You want to know how the hero gets out of the fix he is in, and you press forward and find out with great certainty and little loss of time. The best readers of serious matter have a similar eagerness to discover what the author has to say; they get the author's question, and press on to find his answer. Such readers are both quick and retentive. The dawdling reader, who simply spends so much time and covers so many pages, in the vague hope that something will stick, does not remember the point because he never got the point, and never got it because he wasn't looking for it.
In skilled movement, or skilled action of any sort, the best rule is to fix attention on the end-result or, if the process is long, on the result that immediately needs to be accomplished. "Keep your eye on the ball" when the end just now to be achieved is hitting the ball. Attention to the details of the process, though necessary in learning a skilled movement, is distracting and confusing after skill has been acquired. The runner does not attend to his legs, but to the goal or, if that is still distant, to the runner just ahead of him.
Theory of AttentionThe chief facts to take account of in attempting to form a conception of the brain action in attention are mobility, persistence in spite of mobility, and focusing.
The mobility of attention must mean that brain activities are in constant flux, with nerve currents continually shooting hither and thither and arousing ever fresh groups of neurones; but sustained attention means that a brain {269} activity (representing the desire or interest or reaction-tendency dominant at the time) may persist and limit the range of the mobile activities, by facilitating some of these and inhibiting others.
The "focusing" of mental activity is more difficult to translate into neural terms. The fact to be translated is that, while several mental activities may go on at once, only one occupies the focus of attention. This must mean that, while several brain activities go on at once, one is superior in some way to the rest. The superiority might lie in greater intensity of neurone action, or in greater extent; that is, one brain activity is bigger in some way than any other occurring at the same time--bigger either because the neurones in it are working more energetically or because it includes a larger number of active neurones.
But why should not two equally big brain activities sometimes occur at the same moment, and attention thus be divided? The only promising hypothesis that has been offered to explain the absence of divided attention is that of "neurone drainage", according to which one or the other of two neurone groups, simultaneously aroused to activity, drains off the energy from the other, so putting a quietus on it. Unfortunately, this hypothesis explains too much, for it would make it impossible for minor brain activities to go on at the same time as the major one, and that would mean that only one thing could be done at a time, and that the field of consciousness was no broader than the field of attention. On the whole, we must admit that we do not know exactly what the focusing of attention can mean in brain terms.
{270}
EXERCISES1. Outline the chapter, in the form of a number of "laws", putting under each law the chief facts that belong there.
2. See if you can verify, by watching another person's eyes, the statements made on page 250 regarding eye movements.
3. Choose a spot where there is a good deal going on, stay there for five minutes and jot down the things that attract your attention. Classify the stimuli under the several "factors of advantage".
4. Mention some stimulus to which you have a habit of attention, and one to which you have a habit of inattention.
5. Close the eyes, and direct attention to the field of cutaneous and kinesthetic sensations. Do sensations emerge of which you are ordinarily only dimly conscious? Does shifting occur?
6. Of the several factors of advantage, which would be most effective in catching another person's attention, and which in holding his attention?
7. How does attention, in a blind person, probably differ from that of a seeing person?
8. Doing two things at once. Prepare several columns of one-place numbers, ten digits in a column. Try to add these columns, at the same time reciting a familiar poem, and notice how you manage it, and how accurate your work is.
9. Consider what would be the best way to secure sustained attention to some sort of work from which your mind is apt to wander.
Walter B. Pillsbury gives a full treatment of the subject in his book on Attention, 1908, and a condensed account of the matter in Chapter V of his Essentials of Psychology, 2nd edition, 1920.
Another full treatment is that of Titchener, in his Textbook of Psychology, 1909, pp. 265-302.
On the topic of distraction, see John J. B. Morgan's Overcoming of Distraction and Other Resistances, 1916.
{271}
INTELLIGENCE HOW INTELLIGENCE IS MEASURED, WHAT IT CONSISTS IN AND EVIDENCE OF ITS BEING LARGELY A MATTER OF HEREDITY
Before leaving the general topic of native traits and passing to the process of learning or acquiring traits, we need to complete our picture of the native mental constitution by adding intelligence to reflex action, instinct, emotion, feeling, sensation and attention. Man is an intelligent animal by nature. The fact that he is the most intelligent of animals is due to his native constitution, as the fact that, among the lower animals, some species are more intelligent than others is due to the native constitution of each species. A rat has more intelligence than a frog, a dog than a rat, a monkey than a dog, and a man than a monkey, because of their native constitutions as members of their respective species.
But the different individuals belonging to the same species are not all equal in intelligence, any more than in size or strength or vitality. Some dogs are more intelligent than others, and the same is notably true of men. Now, are these differences between members of the same species due to heredity or environment? This question we can better approach after considering the methods by which psychologists undertake to measure intelligence; and an analysis of these methods may also serve to indicate what is included under the term "intelligence".
{272}
Intelligence TestsNot far from the year 1900 the school authorities of the city of Paris, desiring to know whether the backwardness of many children in school resulted from inattention, mischievousness and similar difficulties of a moral nature, or from genuine inability to learn, put the problem into the hands of Alfred Binet, a leading psychologist of the day; and within a few years thereafter he and a collaborator brought out the now famous Binet-Simon tests for intelligence. In devising these tests, Binet's plan was to leave school knowledge to one side, and look for information and skill picked up by the child from his elders and playmates in the ordinary experience of life. Further, Binet wisely decided not to seek for any single test for so broad a matter as intelligence, but rather to employ many brief tests and give the child plenty of chances to demonstrate what he had learned and what he could do. These little tests were graded in difficulty from the level of the three-year-old to that of the twelve-year-old, and the general plan was to determine how far up the scale the child could successfully pass the tests.
These were not the first tests in existence by any means, but they were the first attempt at a measure of general intelligence, and they proved extraordinarily useful. They have been added to and revised by other psychologists, notably by Terman in America, who has extended the scale of tests up to the adult level. A few samples from Terman's revision will give an idea of the character of the Binet tests.
From the tests for three-year-olds: Naming familiar objects--the child must name correctly at least three of five common objects that are shown him.
Six-year test: Finding omissions in pictures of faces, from which the nose, or one eye, etc., is left out. Four such pictures are shown, and three correct responses are required to pass the test.
Eight-year test: Tell how wood and coal are alike; and so with three other pairs of familiar things; two out of four correct responses are required to pass the test.
{273}
Twelve-year test: Vocabulary test--rough definitions showing the child's understanding of forty words out of a standard list of one hundred.
The question may be raised, "Why such arbitrary standards-three out of five required here, two out of four there, forty out of a hundred the next time?" The answer is that the tests have been standardized by actual trial on large numbers of children, and so standardized that the average child of a given age can just barely pass the tests of that age.
Intelligence is measured by Binet on a scale of mental age. The average child of, let
Comments (0)