bookssland.com » Science » The Descent of Man - Charles Darwin (children's ebooks online txt) 📗

Book online «The Descent of Man - Charles Darwin (children's ebooks online txt) 📗». Author Charles Darwin



1 ... 101 102 103 104 105 106 107 108 109 ... 160
Go to page:
the lopping of the comb must be sexually limited in its transmission, otherwise it would prevent the comb of the male from being perfectly upright, which would be abhorrent to every fancier. On the other hand, the uprightness of the comb in the male must likewise be a sexually- limited character, otherwise it would prevent the comb of the female from lopping over.

From the foregoing illustrations, we see that even with almost unlimited time at command, it would be an extremely difficult and complex, perhaps an impossible process, to change one form of transmission into the other through selection. Therefore, without distinct evidence in each case, I am unwilling to admit that this has been effected in natural species. On the other hand, by means of successive variations, which were from the first sexually limited in their transmission, there would not be the least difficulty in rendering a male bird widely different in colour or in any other character from the female; the latter being left unaltered, or slightly altered, or specially modified for the sake of protection.

As bright colours are of service to the males in their rivalry with other males, such colours would be selected whether or not they were transmitted exclusively to the same sex. Consequently the females might be expected often to partake of the brightness of the males to a greater or less degree; and this occurs with a host of species. If all the successive variations were transmitted equally to both sexes, the females would be indistinguishable from the males; and this likewise occurs with many birds. If, however, dull colours were of high importance for the safety of the female during incubation, as with many ground birds, the females which varied in brightness, or which received through inheritance from the males any marked accession of brightness, would sooner or later be destroyed. But the tendency in the males to continue for an indefinite period transmitting to their female offspring their own brightness, would have to be eliminated by a change in the form of inheritance; and this, as shewn by our previous illustration, would be extremely difficult. The more probable result of the long-continued destruction of the more brightly-coloured females, supposing the equal form of transmission to prevail, would be the lessening or annihilation of the bright colours of the males, owing to their continual crossing with the duller females. It would be tedious to follow out all the other possible results; but I may remind the reader that if sexually-limited variations in brightness occurred in the females, even if they were not in the least injurious to them and consequently were not eliminated, yet they would not be favoured or selected, for the male usually accepts any female, and does not select the more attractive individuals; consequently these variations would be liable to be lost, and would have little influence on the character of the race; and this will aid in accounting for the females being commonly duller-coloured than the males.

In the eighth chapter instances were given, to which many might here be added, of variations occurring at various ages, and inherited at the corresponding age. It was also shewn that variations which occur late in life are commonly transmitted to the same sex in which they first appear; whilst variations occurring early in life are apt to be transmitted to both sexes; not that all the cases of sexually-limited transmission can thus be accounted for. It was further shewn that if a male bird varied by becoming brighter whilst young, such variations would be of no service until the age for reproduction had arrived, and there was competition between rival males. But in the case of birds living on the ground and commonly in need of the protection of dull colours, bright tints would be far more dangerous to the young and inexperienced than to the adult males. Consequently the males which varied in brightness whilst young would suffer much destruction and be eliminated through natural selection; on the other hand, the males which varied in this manner when nearly mature, notwithstanding that they were exposed to some additional danger, might survive, and from being favoured through sexual selection, would procreate their kind. As a relation often exists between the period of variation and the form of transmission, if the bright-coloured young males were destroyed and the mature ones were successful in their courtship, the males alone would acquire brilliant colours and would transmit them exclusively to their male offspring. But I by no means wish to maintain that the influence of age on the form of transmission, is the sole cause of the great difference in brilliancy between the sexes of many birds.

When the sexes of birds differ in colour, it is interesting to determine whether the males alone have been modified by sexual selection, the females having been left unchanged, or only partially and indirectly thus changed; or whether the females have been specially modified through natural selection for the sake of protection. I will therefore discuss this question at some length, even more fully than its intrinsic importance deserves; for various curious collateral points may thus be conveniently considered.

Before we enter on the subject of colour, more especially in reference to Mr. Wallace’s conclusions, it may be useful to discuss some other sexual differences under a similar point of view. A breed of fowls formerly existed in Germany (6. Bechstein, ‘Naturgeschichte Deutschlands,’ 1793, B. iii. 339.) in which the hens were furnished with spurs; they were good layers, but they so greatly disturbed their nests with their spurs that they could not be allowed to sit on their own eggs. Hence at one time it appeared to me probable that with the females of the wild Gallinaceae the development of spurs had been checked through natural selection, from the injury thus caused to their nests. This seemed all the more probable, as wing-spurs, which would not be injurious during incubation, are often as well-developed in the female as in the male; though in not a few cases they are rather larger in the male. When the male is furnished with leg-spurs the female almost always exhibits rudiments of them,—the rudiment sometimes consisting of a mere scale, as in Gallus. Hence it might be argued that the females had aboriginally been furnished with well-developed spurs, but that these had subsequently been lost through disuse or natural selection. But if this view be admitted, it would have to be extended to innumerable other cases; and it implies that the female progenitors of the existing spur-bearing species were once encumbered with an injurious appendage.

In some few genera and species, as in Galloperdix, Acomus, and the Javan peacock (Pavo muticus), the females, as well as the males, possess well- developed leg-spurs. Are we to infer from this fact that they construct a different sort of nest from that made by their nearest allies, and not liable to be injured by their spurs; so that the spurs have not been removed? Or are we to suppose that the females of these several species especially require spurs for their defence? It is a more probable conclusion that both the presence and absence of spurs in the females result from different laws of inheritance having prevailed, independently of natural selection. With the many females in which spurs appear as rudiments, we may conclude that some few of the successive variations, through which they were developed in the males, occurred very early in life, and were consequently transferred to the females. In the other and much rarer cases, in which the females possess fully developed spurs, we may conclude that all the successive variations were transferred to them; and that they gradually acquired and inherited the habit of not disturbing their nests.

The vocal organs and the feathers variously modified for producing sound, as well as the proper instincts for using them, often differ in the two sexes, but are sometimes the same in both. Can such differences be accounted for by the males having acquired these organs and instincts, whilst the females have been saved from inheriting them, on account of the danger to which they would have been exposed by attracting the attention of birds or beasts of prey? This does not seem to me probable, when we think of the multitude of birds which with impunity gladden the country with their voices during the spring. (7. Daines Barrington, however, thought it probable (‘Philosophical Transactions,’ 1773, p. 164) that few female birds sing, because the talent would have been dangerous to them during incubation. He adds, that a similar view may possibly account for the inferiority of the female to the male in plumage.) It is a safer conclusion that, as vocal and instrumental organs are of special service only to the males during their courtship, these organs were developed through sexual selection and their constant use in that sex alone—the successive variations and the effects of use having been from the first more or less limited in transmission to the male offspring.

Many analogous cases could be adduced; those for instance of the plumes on the head being generally longer in the male than in the female, sometimes of equal length in both sexes, and occasionally absent in the female,— these several cases occurring in the same group of birds. It would be difficult to account for such a difference between the sexes by the female having been benefited by possessing a slightly shorter crest than the male, and its consequent diminution or complete suppression through natural selection. But I will take a more favourable case, namely the length of the tail. The long train of the peacock would have been not only inconvenient but dangerous to the peahen during the period of incubation and whilst accompanying her young. Hence there is not the least a priori improbability in the development of her tail having been checked through natural selection. But the females of various pheasants, which apparently are exposed on their open nests to as much danger as the peahen, have tails of considerable length. The females as well as the males of the Menura superba have long tails, and they build a domed nest, which is a great anomaly in so large a bird. Naturalists have wondered how the female Menura could manage her tail during incubation; but it is now known (8. Mr. Ramsay, in ‘Proc. Zoolog. Soc.’ 1868, p. 50.) that she “enters the nest head first, and then turns round with her tail sometimes over her back, but more often bent round by her side. Thus in time the tail becomes quite askew, and is a tolerable guide to the length of time the bird has been sitting.” Both sexes of an Australian kingfisher (Tanysiptera sylvia) have the middle tail-feathers greatly lengthened, and the female makes her nest in a hole; and as I am informed by Mr. R.B. Sharpe these feathers become much crumpled during incubation.

In these two latter cases the great length of the tail-feathers must be in some degree inconvenient to the female; and as in both species the tail- feathers of the female are somewhat shorter than those of the male, it might be argued that their full development had been prevented through natural selection. But if the development of the tail of the peahen had been checked only when it became inconveniently or dangerously great, she would have retained a much longer tail than she actually possesses; for her tail is not nearly so long, relatively to the size of her body, as that of many female pheasants, nor longer than that of the female turkey. It must also be borne in mind

1 ... 101 102 103 104 105 106 107 108 109 ... 160
Go to page:

Free e-book «The Descent of Man - Charles Darwin (children's ebooks online txt) 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment