General Science - Bertha May Clark (children's books read aloud TXT) 📗
- Author: Bertha May Clark
- Performer: -
Book online «General Science - Bertha May Clark (children's books read aloud TXT) 📗». Author Bertha May Clark
FIG. 42.—Water rises in the tube when the air is withdrawn.
The column of water which can be raised this way is approximately 34 feet, sometimes a trifle more, sometimes a trifle less. If water were twice as heavy, just half as high a column could be supported by the atmosphere. Mercury is about thirteen times as heavy as water and, therefore, the column of mercury supported by the atmosphere is about one thirteenth as high as the column of water supported by the atmosphere. This can easily be demonstrated. Fill a glass tube about a yard long with mercury, close the open end with a finger, and quickly insert the end of the inverted tube in a dish of mercury (Fig. 43). When the finger is removed, the mercury falls somewhat, leaving an empty space in the top of the tube. If we measure the column in the tube, we find its height is about one thirteenth of 34 feet or 30 inches, exactly what we should expect. Since there is no air pressure within the tube, the atmospheric pressure on the mercury in the dish is balanced solely by the mercury within the tube, that is, by a column of mercury 30 inches high. The shortness of the mercury column as compared with that of water makes the mercury more convenient for both experimental and practical purposes. (See Laboratory Manual.)
FIG. 43.—The air supports a column of mercury 30 inches high.
78. The Barometer. Since the pressure of the air changes from time to time, the height of the mercury will change from day to day, and hour to hour. When the air pressure is heavy, the mercury will tend to be high; when the air pressure is low, the mercury will show a shorter column; and by reading the level of the mercury one can learn the pressure of the atmosphere. If a glass tube and dish of mercury are attached to a board and the dish of mercury is inclosed in a case for protection from moisture and dirt, and further if a scale of inches or centimeters is made on the upper portion of the board, we have a mercurial barometer (Fig. 44).
FIG. 44.—A simple barometer.
If the barometer is taken to the mountain top, the column of mercury falls gradually during the ascent, showing that as one ascends, the pressure decreases in agreement with the statement in Section 76. Observations similar to these were made by Torricelli as early as the sixteenth century. Taking a barometric reading consists in measuring the height of the mercury column.
79. A Portable Barometer. The mercury barometer is large and inconvenient to carry from place to place, and a more portable form has been devised, known as the aneroid barometer (Fig. 45). This form of barometer is extremely sensitive; indeed, it is so delicate that it shows the slight difference between the pressure at the table top and the pressure at the floor level, whereas the mercury barometer would indicate only a much greater variation in atmospheric pressure. The aneroid barometers are frequently made no larger than a watch and can be carried conveniently in the pocket, but they get out of order easily and must be frequently readjusted. The aneroid barometer is an air-tight box whose top is made of a thin metallic disk which bends inward or outward according to the pressure of the atmosphere. If the atmospheric pressure increases, the thin disk is pushed slightly inward; if, on the other hand, the atmospheric pressure decreases, the pressure on the metallic disk decreases and the disk is not pressed so far inward. The motion of the disk is small, and it would be impossible to calculate changes in atmospheric pressure from the motion of the disk, without some mechanical device to make the slight changes in motion perceptible.
FIG. 45.—Aneroid barometer.
In order to magnify the slight changes in the position of the disk, the thin face is connected with a system of levers, or wheels, which multiplies the changes in motion and communicates them to a pointer which moves around a graduated circular face. In Figure 45 the real barometer is scarcely visible, being securely inclosed in a metal case for protection; the principle, however, can be understood by reference to Figure 46.
FIG. 46.—Principle of the aneroid barometer.
80. The Weight of the Air. We have seen that the pressure of the atmosphere at any point is due to the weight of the air column which stretches from that point far up into the sky above. This weight varies slightly from time to time and from place to place, but it is equal to about 15 pounds to the square inch as shown by actual measurement. It comes to us as a surprise sometimes that air actually has weight; for example, a mass of 12 cubic feet of air at average pressure weighs 1 pound, and the air in a large assembly hall weighs more than 1 ton.
We are practically never conscious of this really enormous pressure of the atmosphere, which is exerted over every inch of our bodies, because the pressure is exerted equally over the outside and the inside of our bodies; the cells and tissues of our bodies containing gases under atmospheric pressure. If, however, the finger is placed over the open end of a tube and the air is sucked out of the tube by the mouth, the flesh of the finger bulges into the tube because the pressure within the finger is no longer equalized by the usual atmospheric pressure (Fig. 47).
FIG. 47.—The flesh bulges out.
Aëronauts have never ascended much higher than 7 miles; at that height the barometer stands at 7 inches instead of at 30 inches, and the internal pressure in cells and tissues is not balanced by an equal external pressure. The unequalized internal pressure forces the blood to the surface of the body and causes rupture of blood vessels and other physical difficulties.
81. Use of the Barometer. Changes in air pressure are very closely connected with changes in the weather. The barometer does not directly foretell the weather, but a low or falling pressure, accompanied by a simultaneous fall of the mercury, usually precedes foul weather, while a rising pressure, accompanied by a simultaneous rise in the mercury, usually precedes fair weather. The barometer is not an infallible prophet, but it is of great assistance in predicting the general trend of the weather. There are certain changes in the barometer which follow no known laws, and which allow of no safe predictions, but on the other hand, general future conditions for a few days ahead can be fairly accurately determined. Figure 48 shows a barograph or self-registering barometer which automatically registers air pressure.
FIG. 48.—Barograph.
Seaport towns in particular, but all cities, large or small, and villages too, are on request notified by the United States Weather Bureau ten hours or more in advance, of probable weather conditions, and in this way precautions are taken which annually save millions of dollars and hundreds of lives.
I recollect a summer spent on a New Hampshire farm, and know that an old farmer started his farm hands haying by moonlight at two o'clock in the morning, because the Special Farmer's Weather Forecast of the preceding evening had predicted rain for the following day. His reliance on the weather report was not misplaced, since the storm came with full force at noon. Sailing vessels, yachts, and fishing dories remain within reach of port if the barometer foretells storms.
FIG. 49.—Isotherms.
82. Isobaric and Isothermal Lines. If a line were drawn through all points on the surface of the earth having an equal barometric pressure at the same time, such a line would be called an isobar. For example, if the height of barometers in different localities is observed at exactly the same time, and if all the cities and towns which have the same pressure are connected by a line, the curved lines will be called isobars. By the aid of these lines the barometric conditions over a large area can be studied. The Weather Bureau at Washington relies greatly on these isobars for statements concerning local and distant weather forecasts, any shift in isobaric lines showing change in atmospheric pressure.
If a line is drawn through all points on the surface of the earth having the same temperature at the same instant, such a line is called an isotherm (Fig. 49).
83. Weather Maps. Scattered over the United States are about 125 Government Weather Stations, at each of which three times a day, at the same instant, accurate observations of the weather are made. These observations, which consist of the reading of barometer and thermometer, the determination of the velocity and direction of the wind, the determination of the humidity and of the amount of rain or snow, are telegraphed to the chief weather official at Washington. From the reports of wind storms, excessive rainfall, hot waves, clearing weather, etc., and their rate of travel, the chief officials predict where the storms, etc., will be at a definite future time. In the United States, the general movement of weather conditions, as indicated by the barometer, is from west to east, and if a certain weather condition prevails in the west, it is probable that it will advance eastward, although with decided modifications. So many influences modify atmospheric conditions that unfailing predictions are impossible, but the Weather Bureau predictions prove true in about eight cases out of ten.
The reports made out at Washington are telegraphed on request to cities in this country, and are frequently published in the daily papers, along with the forecast of the local office. A careful study of these reports enables one to forecast to some extent the probable weather conditions of the day.
The first impression of a weather map (Fig. 50) with its various lines and signals is apt to be one of confusion, and the temptation comes to abandon the task of finding an underlying plan of the weather. If one will bear in mind a few simple rules, the complexity of the weather map will disappear and a glance at the map will give one information concerning general weather conditions just as a glance at the thermometer in the morning will give some indication of the probable temperature of the day. (See Laboratory Manual.)
FIG. 50. Weather Map
On the weather map
Comments (0)