A History of Science, vol 2 - Henry Smith Williams (ebook reader with highlight function .TXT) 📗
- Author: Henry Smith Williams
- Performer: -
Book online «A History of Science, vol 2 - Henry Smith Williams (ebook reader with highlight function .TXT) 📗». Author Henry Smith Williams
“The improbability is tripled by the complete overthrow of that order which rules all the heavenly bodies in which the revolving motion is definitely established. The greater the sphere is in such a case, so much longer is the time required for its revolution; the smaller the sphere the shorter the time. Saturn, whose orbit surpasses those of all the planets in size, traverses it in thirty years. Jupiter[4] completes its smaller course in twelve years, Mars in two; the moon performs its much smaller revolution within a month. Just as clearly in the Medicean stars, we see that the one nearest Jupiter completes its revolution in a very short time—about forty-two hours; the next in about three and one-half days, the third in seven, and the most distant one in sixteen days. This rule, which is followed throughout, will still remain if we ascribe the twenty-four-hourly motion to a rotation of the earth. If, however, the earth is left motionless, we must go first from the very short rule of the moon to ever greater ones—to the two-yearly rule of Mars, from that to the twelve-yearly one of Jupiter, from here to the thirty-yearly one of Saturn, and then suddenly to an incomparably greater sphere, to which also we must ascribe a complete rotation in twenty-four hours. If, however, we assume a motion of the earth, the rapidity of the periods is very well preserved; from the slowest sphere of Saturn we come to the wholly motionless fixed stars. We also escape thereby a fourth difficulty, which arises as soon as we assume that there is motion in the sphere of the stars. I mean the great unevenness in the movement of these very stars, some of which would have to revolve with extraordinary rapidity in immense circles, while others moved very slowly in small circles, since some of them are at a greater, others at a less, distance from the pole. That is likewise an inconvenience, for, on the one hand, we see all those stars, the motion of which is indubitable, revolve in great circles, while, on the other hand, there seems to be little object in placing bodies, which are to move in circles, at an enormous distance from the centre and then let them move in very small circles. And not only are the size of the different circles and therewith the rapidity of the movement very different in the different fixed stars, but the same stars also change their orbits and their rapidity of motion. Therein consists the fifth inconvenience. Those stars, namely, which were at the equator two thousand years ago, and hence described great circles in their revolutions, must to-day move more slowly and in smaller circles, because they are many degrees removed from it.
It will even happen, after not so very long a time, that one of those which have hitherto been continually in motion will finally coincide with the pole and stand still, but after a period of repose will again begin to move. The other stars in the mean while, which unquestionably move, all have, as was said, a great circle for an orbit and keep this unchangeably.
“The improbability is further increased—this may be considered the sixth inconvenience—by the fact that it is impossible to conceive what degree of solidity those immense spheres must have, in the depths of which so many stars are fixed so enduringly that they are kept revolving evenly in spite of such difference of motion without changing their respective positions. Or if, according to the much more probable theory, the heavens are fluid, and every star describes an orbit of its own, according to what law then, or for what reason, are their orbits so arranged that, when looked at from the earth, they appear to be contained in one single sphere? To attain this it seems to me much easier and more convenient to make them motionless instead of moving, just as the paving-stones on the market-place, for instance, remain in order more easily than the swarms of children running about on them.
“Finally, the seventh difficulty: If we attribute the daily rotation to the higher region of the heavens, we should have to endow it with force and power sufficient to carry with it the innumerable host of the fixed stars —every one a body of very great compass and much larger than the earth—and all the planets, although the latter, like the earth, move naturally in an opposite direction. In the midst of all this the little earth, single and alone, would obstinately and wilfully withstand such force—a supposition which, it appears to me, has much against it. I could also not explain why the earth, a freely poised body, balancing itself about its centre, and surrounded on all sides by a fluid medium, should not be affected by the universal rotation.
Such difficulties, however, do not confront us if we attribute motion to the earth—such a small, insignificant body in comparison with the whole universe, and which for that very reason cannot exercise any power over the latter.
“Simplicio. You support your arguments throughout, it seems to me, on the greater ease and simplicity with which the said effects are produced. You mean that as a cause the motion of the earth alone is just as satisfactory as the motion of all the rest of the universe with the exception of the earth; you hold the actual event to be much easier in the former case than in the latter. For the ruler of the universe, however, whose might is infinite, it is no less easy to move the universe than the earth or a straw balm. But if his power is infinite, why should not a greater, rather than a very small, part of it be revealed to me?
“Salviati. If I had said that the universe does not move on account of the impotence of its ruler, I should have been wrong and your rebuke would have been in order. I admit that it is just as easy for an infinite power to move a hundred thousand as to move one. What I said, however, does not refer to him who causes the motion, but to that which is moved. In answer to your remark that it is more fitting for an infinite power to reveal a large part of itself rather than a little, I answer that, in relation to the infinite, one part is not greater than another, if both are finite. Hence it is unallowable to say that a hundred thousand is a larger part of an infinite number than two, although the former is fifty thousand times greater than the latter. If, therefore, we consider the moving bodies, we must unquestionably regard the motion of the earth as a much simpler process than that of the universe; if, furthermore, we direct our attention to so many other simplifications which may be reached only by this theory, the daily movement of the earth must appear much more probable than the motion of the universe without the earth, for, according to Aristotle’s just axiom, ‘Frustra fit per plura, quod potest fieri per p auciora’ (It is vain to expend many means where a few are sufficient).”[2]
The work was widely circulated, and it was received with an interest which bespeaks a wide-spread undercurrent of belief in the Copernican doctrine. Naturally enough, it attracted immediate attention from the church authorities. Galileo was summoned to appear at Rome to defend his conduct. The philosopher, who was now in his seventieth year, pleaded age and infirmity. He had no desire for personal experience of the tribunal of the Inquisition; but the mandate was repeated, and Galileo went to Rome. There, as every one knows, he disavowed any intention to oppose the teachings of Scripture, and formally renounced the heretical doctrine of the earth’s motion. According to a tale which so long passed current that every historian must still repeat it though no one now believes it authentic, Galileo qualified his renunciation by muttering to himself, “E pur si muove” (It does move, none the less), as he rose to his feet and retired from the presence of his persecutors. The tale is one of those fictions which the dramatic sense of humanity is wont to impose upon history, but, like most such fictions, it expresses the spirit if not the letter of truth; for just as no one believes that Galileo’s lips uttered the phrase, so no one doubts that the rebellious words were in his mind.
After his formal renunciation, Galileo was allowed to depart, but with the injunction that he abstain in future from heretical teaching. The remaining ten years of his life were devoted chiefly to mechanics, where his experiments fortunately opposed the Aristotelian rather than the Hebrew teachings. Galileo’s death occurred in 1642, a hundred years after the death of Copernicus. Kepler had died thirteen years before, and there remained no astronomer in the field who is conspicuous in the history of science as a champion of the Copernican doctrine. But in truth it might be said that the theory no longer needed a champion. The researches of Kepler and Galileo had produced a mass of evidence for the Copernican theory which amounted to demonstration. A generation or two might be required for this evidence to make itself everywhere known among men of science, and of course the ecclesiastical authorities must be expected to stand by their guns for a somewhat longer period. In point of fact, the ecclesiastical ban was not technically removed by the striking of the Copernican books from the list of the Index Expurgatorius until the year 1822, almost two hundred years after the date of Galileo’s dialogue. But this, of course, is in no sense a guide to the state of general opinion regarding the theory. We shall gain a true gauge as to this if we assume that the greater number of important thinkers had accepted the heliocentric doctrine before the middle of the seventeenth century, and that before the close of that century the old Ptolemaic idea had been quite abandoned. A wonderful revolution in man’s estimate of the universe had thus been effected within about two centuries after the birth of Copernicus.
V. GALILEO AND THE NEW PHYSICS
After Galileo had felt the strong hand of the Inquisition, in 1632, he was careful to confine his researches, or at least his publications, to topics that seemed free from theological implications. In doing so he reverted to the field of his earliest studies —namely, the field of mechanics;
Comments (0)