bookssland.com » Science » The Elements of Geology - William Harmon Norton (best beach reads TXT) 📗

Book online «The Elements of Geology - William Harmon Norton (best beach reads TXT) 📗». Author William Harmon Norton



1 ... 19 20 21 22 23 24 25 26 27 ... 53
Go to page:
cross bedding is inclined in different directions.

THICKNESS OF SEA DEPOSITS. Remembering the vast amount of material denuded from the land and deposited offshore, we should expect that with the lapse of time sea deposits would have grown to an enormous thickness. It is a suggestive fact that, as a rule, the profile of the ocean bed is that of a soup plate,—a basin surrounded by a flaring rim. On the CONTINENTAL SHELF, as the rim is called, the water is seldom more than six hundred feet in depth at the outer edge, and shallows gradually towards shore. Along the eastern coast of the United States the continental shelf is from fifty to one hundred and more miles in width; on the Pacific coast it is much narrower. So far as it is due to upbuilding, a wide continental shelf, such as that of the Atlantic coast, implies a massive continental delta thousands of feet in thickness. The coastal plain of the Atlantic states may be regarded as the emerged inner margin of this shelf, and borings made along the coast probe it to the depth of as much as three thousand feet without finding the bottom of ancient offshore deposits. Continental shelves may also be due in part to a submergence of the outer margin of a continental plateau and to marine abrasion.

DEPOSITION OF SEDIMENTS AND SUBSIDENCE. The stratified rocks of the land show in many places ancient sediments which reach a thickness which is measured in miles, and which are yet the product of well-nigh continuous deposition. Such strata may prove by their fossils and by their composition and structure that they were all laid offshore in shallow water. We must infer that, during the vast length of time recorded by the enormous pile, the floor of the sea along the coast was slowly sinking, and that the trough was constantly being filled, foot by foot, as fast as it was depressed. Such gradual, quiet movements of the earth's crust not only modify the outline of coasts, as we have seen, but are of far greater geological importance in that they permit the making of immense deposits of stratified rock.

A slow subsidence continued during long time is recorded also in the succession of the various kinds of rock that come to be deposited in the same area. As the sea transgresses the land, i.e. encroaches upon it, any given part of the sea bottom is brought farther and farther from the shore. The basal conglomerate formed by bowlder and pebble beaches comes to be covered with sheets of sand, and these with layers of mud as the sea becomes deeper and the shore more remote; while deposits of limestone are made when at last no waste is brought to the place from the now distant land, and the water is left clear for the growth of mollusks and other lime-secreting organisms.

RATE OF DEPOSITION. As deposition in the sea corresponds to denudation on the land, we are able to make a general estimate of the rate at which the former process is going on. Leaving out of account the soluble matter removed, the Mississippi is lowering its basin at the rate of one foot in five thousand years, and we may assume this as the average rate at which the earth's land surface of fifty-seven million square miles is now being denuded by the removal of its mechanical waste. But sediments from the land are spread within a zone but two or three hundred miles in width along the margin of the continents, a line one hundred thousand miles long. As the area of deposition—about twenty-five million square miles—is about one half the area of denudation, the average rate of deposition must be twice the average rate of denudation, i.e. about one foot in twenty-five hundred years. If some deposits are made much more rapidly than this, others are made much more slowly. If they were laid no faster than the present average rate, the strata of ancient sea deposits exposed in a quarry fifty feet deep represent a lapse of at least one hundred and twenty-five thousand years, and those of a formation five hundred feet thick required for their accumulation one million two hundred and fifty thousand years.

THE SEDIMENTARY RECORD AND THE DENUDATION CYCLE. We have seen that the successive stages in a cycle of denudation, such as that by which a land mass of lofty mountains is worn to low plains, are marked each by its own peculiar land forms, and that the forms of the earlier stages are more or less completely effaced as the cycle draws toward an end. Far more lasting records of each stage are left in the sedimentary deposits of the continental delta.

Thus, in the youth of such a land mass as we have mentioned, torrential streams flowing down the steep mountain sides deliver to the adjacent sea their heavy loads of coarse waste, and thick offshore deposits of sand and gravel (Fig. 156) record the high elevation of the bordering land. As the land is worn to lower levels, the amount and coarseness of the waste brought to the sea diminishes, until the sluggish streams carry only a fine silt which settles on the ocean floor near to land in wide sheets of mud which harden into shale. At last, in the old age of the region (Fig. 157), its low plains contribute little to the sea except the soluble elements of the rocks, and in the clear waters near the land lime-secreting organisms flourish and their remains accumulate in beds of limestone. When long-weathered lands mantled with deep, well-oxidized waste are uplifted by a gradual movement of the earth's crust, and the mantle is rapidly stripped off by the revived streams, the uprise is recorded in wide deposits of red and yellow clays and sands upon the adjacent ocean floor.

Where the waste brought in is more than the waves can easily distribute, as off the mouths of turbid rivers which drain highlands near the sea, deposits are little winnowed, and are laid in rapidly alternating, shaly sandstones and sandy shales.

Where the highlands are of igneous rock, such as granite, and mechanical disintegration is going on more rapidly than chemical decay, these conditions are recorded in the nature of the deposits laid offshore. The waste swept in by streams contains much feldspar and other minerals softer and more soluble than quartz, and where the waves have little opportunity to wear and winnow it, it comes to rest in beds of sandstone in which grains of feldspar and other soft minerals are abundant. Such feldspathic sandstones are known as ARKOSE.

On the other hand, where the waste supplied to the sea comes chiefly from wide, sandy, coastal plains, there are deposited off- shore clean sandstones of well-worn grains of quartz alone. In such coastal plains the waste of the land is stored for ages. Again and again they are abandoned and invaded by the sea as from time to time the land slowly emerges and is again submerged. Their deposits are long exposed to the weather, and sorted over by the streams, and winnowed and worked over again and again by the waves. In the course of long ages such deposits thus become thoroughly sorted, and the grains of all minerals softer than quartz are ground to mud.

DEEP-SEA OOZES AND CLAYS

GLOBIGERINA OOZE. Beyond the reach of waste from the land the bottom of the deep sea is carpeted for the most part with either chalky ooze or a fine red clay. The surface waters of the warm seas swarm with minute and lowly animals belonging to the order of the Foraminifera, which secrete shells of carbonate of lime. At death these tiny white shells fall through the sea water like snowflakes in the air, and, slowly dissolving, seem to melt quite away before they can reach depths greater than about three miles. Near shore they reach bottom, but are masked by the rapid deposit of waste derived from the land. At intermediate depths they mantle the ocean floor with a white, soft lime deposit known as Globigerina ooze, from a genus of the Foraminifera which contributes largely to its formation.

RED CLAY. Below depths of from fifteen to eighteen thousand feet the ocean bottom is sheeted with red or chocolate colored clay. It is the insoluble residue of seashells, of the debris of submarine volcanic eruptions, of volcanic dust wafted by the winds, and of pieces of pumice drifted by ocean currents far from the volcanoes from which they were hurled. The red clay builds up with such inconceivable slowness that the teeth of sharks and the hard ear bones of whales may be dredged in large numbers from the deep ocean bed, where they have lain unburied for thousands of years; and an appreciable part of the clay is also formed by the dust of meteorites consumed in the atmosphere,—a dust which falls everywhere on sea and land, but which elsewhere is wholly masked by other deposits.

The dark, cold abysses of the ocean are far less affected by change than any other portion of the surface of the lithosphere. These vast, silent plains of ooze lie far below the reach of storms. They know no succession of summer and winter, or of night and day. A mantle of deep and quiet water protects them from the agents of erosion which continually attack, furrow, and destroy the surface of the land. While the land is the area of erosion, the sea is the area of deposition. The sheets of sediment which are slowly spread there tend to efface any inequalities, and to form a smooth and featureless subaqueous plain.

With few exceptions, the stratified rocks of the land are proved by their fossils and composition to have been laid in the sea; but in the same way they are proved to be offshore, shallow-water deposits, akin to those now making on continental shelves. Deep- sea deposits are absent from the rocks of the land, and we may therefore infer that the deep sea has never held sway where the continents now are,—that the continents have ever been, as now, the elevated portions of the lithosphere, and that the deep seas of the present have ever been its most depressed portions.

THE REEF-BUILDING CORALS

In warm seas the most conspicuous of rock-making organisms are the corals known as the reef builders. Floating in a boat over a coral reef, as, for example, off the south coast of Florida or among the Bahamas, one looks down through clear water on thickets of branching coral shrubs perhaps as much as eight feet high, and hemispherical masses three or four feet thick, all abloom with countless minute flowerlike coral polyps, gorgeous in their colors of yellow, orange, green, and red. In structure each tiny polyp is little more than a fleshy sac whose mouth is surrounded with petal-like tentacles, or feelers. From the sea water the polyps secrete calcium carbonate and build it up into the stony framework which supports their colonies. Boring mollusks, worms, and sponges perforate and honeycomb this framework even while its surface is covered with myriads of living polyps. It is thus easily broken by the waves, and white fragments of coral trees strew the ground beneath. Brilliantly colored fishes live in these coral groves, and countless mollusks, sea urchins, and other forms of marine life make here their home. With the debris from all these sources the reef is constantly built up until it rises to low-tide level. Higher than this the corals cannot grow, since they are killed by a few hours' exposure to the air.

When the reef has risen to wave base, the waves abrade it on the windward side and pile to leeward coral blocks torn from their foundation, filling the interstices with finer fragments. Thus they heap up along the reef low, narrow islands (Fig. 160).

Reef building is a comparatively rapid progress. It has been estimated that off Florida a reef could be built up to the surface from a depth of fifty feet in about fifteen hundred years.

CORAL LIMESTONES. Limestones of various kinds are due to the reef builders. The reef rock is made of corals in place and broken fragments of all sizes, cemented together with calcium carbonate from solution by infiltrating waters. On the island beaches coral sand is forming oolitic limestone, and the white coral mud with which the sea is milky for miles about the reef in times of storm settles and concretes into a compact limestone of finest grain. Corals have been among the most important limestone builders of the sea ever since they made their appearance in the early geological ages.

The areas on which coral limestone is now forming are large. The Great Barrier Reef of Australia, which lies off the north-eastern coast, is twelve hundred and fifty miles long, and has a width of from ten to ninety miles. Most of the islands of the tropics

1 ... 19 20 21 22 23 24 25 26 27 ... 53
Go to page:

Free e-book «The Elements of Geology - William Harmon Norton (best beach reads TXT) 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment