The Elements of Geology - William Harmon Norton (best beach reads TXT) 📗
- Author: William Harmon Norton
- Performer: -
Book online «The Elements of Geology - William Harmon Norton (best beach reads TXT) 📗». Author William Harmon Norton
SOME INFERENCES FROM THE RECORDS OF THE HISTORY OF LIFE UPON THE PLANET. Meager as are these records, they set forth plainly some important truths which we will now briefly mention.
1. Each series of the stratified rocks, except the very deepest, contains vestiges of life. Hence THE EARTH WAS TENANTED BY LIVING CREATURES FOR AN UNCALCULATED LENGTH OF TIME BEFORE HUMAN HISTORY BEGAN.
2. LIFE ON THE EARTH HAS BEEN EVERCHANGING. The youngest strata hold the remains of existing species of animals and plants and those of species and varieties closely allied to them. Strata somewhat older contain fewer existing species, and in strata of a still earlier, but by no means an ancient epoch, no existing species are to be found; the species of that epoch and of previous epochs have vanished from the living world. During all geological time since life began on earth old species have constantly become extinct and with them the genera and families to which they belong, and other species, genera, and families have replaced them. The fossils of each formation differ on the whole from those of every other. The assemblage of animals and plants (the FAUNA- FLORA) of each epoch differs from that of every other epoch.
In many cases the extinction of a type has been gradual; in other instances apparently abrupt. There is no evidence that any organism once become extinct has ever reappeared. The duration of a species in time, or its "vertical range" through the strata, varies greatly. Some species are limited to a stratum a few feet in thickness; some may range through an entire formation and be found but little modified in still higher beds. A formation may thus often be divided into zones, each characterized by its own peculiar species. As a rule, the simpler organisms have a longer duration as species, though not as individuals, than the more complex.
3. THE LARGER ZOOLOGICAL AND BOTANICAL GROUPINGS SURVIVE LONGER THAN THE SMALLER. Species are so short-lived that a single geological epoch may be marked by several more or less complete extinctions of the species of its fauna-flora and their replacement by other species. A genus continues with new species after all the species with which it began have become extinct. Families survive genera, and orders families. Classes are so long- lived that most of those which are known from the earliest formations are represented by living forms, and no sub-kingdom has ever become extinct.
Thus, to take an example from the stony corals,—the ZOANTHARIA,— the particular characters—which constituted a certain SPECIES— Facosites niagarensis—of the order are confined to the Niagara series. Its GENERIC characters appeared in other species earlier in the Silurian and continued through the Devonian. Its FAMILY characters, represented in different genera and species, range from the Ordovician to the close of the Paleozoic; while the characters which it shares with all its order, the Zoantharia, began in the Cambrian and are found in living species.
4. THE CHANGE IN ORGANISMS HAS BEEN GRADUAL. The fossils of each life zone and of each formation of a conformable series closely resemble, with some explainable exceptions, those of the beds immediately above and below. The animals and plants which tenanted the earth during any geological epoch are so closely related to those of the preceding and the succeeding epochs that we may consider them to be the descendants of the one and the ancestors of the other, thus accounting for the resemblance by heredity. It is therefore believed that the species of animals and plants now living on the earth are the descendants of the species whose remains we find entombed in the rocks, and that the chain of life has been unbroken since its beginning.
5. THE CHANGE IN SPECIES HAS BEEN A GRADUAL DIFFERENTIATION. Tracing the lines of descent of various animals and plants of the present backward through the divisions of geologic time, we find that these lines of descent converge and unite in simpler and still simpler types. The development of life may be represented by a tree whose trunk is found in the earliest ages and whose branches spread and subdivide to the growing twigs of present species.
6. THE CHANGE IN ORGANISMS THROUGHOUT GEOLOGIC TIME HAS BEEN A PROGRESSIVE CHANGE. In the earliest ages the only animals and plants on the earth were lowly forms, simple and generalized in structure; while succeeding ages have been characterized by the introduction of types more and more specialized and complex, and therefore of higher rank in the scale of being. Thus the Algonkian contains the remains of only the humblest forms of the invertebrates. In the Cambrian, Ordovician, and Silurian the invertebrates were represented in all their subkingdoms by a varied fauna. In the Devonian, fishes—the lowest of the vertebrates—became abundant. Amphibians made their entry on the stage in the Carboniferous, and reptiles came to rule the world in the Mesozoic. Mammals culminated in the Tertiary in strange forms which became more and more like those of the present as the long ages of that era rolled on; and latest of all appeared the noblest product of the creative process, man.
Just as growth is characteristic of the individual life, so gradual, progressive change, or evolution, has characterized the history of life upon the planet. The evolution of the organic kingdom from its primitive germinal forms to the complex and highly organized fauna-flora of to-day may be compared to the growth of some noble oak as it rises from the acorn, spreading loftier and more widely extended branches as it grows.
7. While higher and still higher types have continually been evolved, until man, the highest of all, appeared, THE LOWER AND EARLIER TYPES HAVE GENERALLY PERSISTED. Some which reached their culmination early in the history of the earth have since changed only in slight adjustments to a changing environment. Thus the brachiopods, a type of shellfish, have made no progress since the Paleozoic, and some of their earliest known genera are represented by living forms hardly to be distinguished from their ancient ancestors. The lowest and earliest branches of the tree of life have risen to no higher levels since they reached their climax of development long ago.
8. A strange parallel has been found to exist between the evolution of organisms and the development of the individual. In the embryonic stages of its growth the individual passes swiftly through the successive stages through which its ancestors evolved during the millions of years of geologic time. THE DEVELOPMENT OF THE INDIVIDUAL RECAPITULATES THE EVOLUTION OF THE RACE.
The frog is a typical amphibian. As a tadpole it passes through a stage identical in several well-known features with the maturity of fishes; as, for example, its aquatic life, the tail by which it swims, and the gills through which it breathes. It is a fair inference that the tadpole stage in the life history of the frog represents a stage in the evolution of its kind,—that the Amphibia are derived from fishlike ancestral forms. This inference is amply confirmed in the geological record; fishes appeared before Amphibia and were connected with them by transitional forms.
THE GREAT LENGTH OF GEOLOGIC TIME INFERRED FROM THE SLOW CHANGE OF SPECIES. Life forms, like land forms, are thus subject to change under the influence of their changing environment and of forces acting from within. How slowly they change may be seen in the apparent stability of existing species. In the lifetime of the observer and even in the recorded history of man, species seem as stable as the mountain and the river. But life forms and land forms are alike variable, both in nature and still more under the shaping hand of man. As man has modified the face of the earth with his great engineering works, so he has produced widely different varieties of many kinds of domesticated plants and animals, such as the varieties of the dog and the horse, the apple and the rose, which may be regarded in some respects as new species in the making. We have assumed that land forms have changed in the past under the influence of forces now in operation. Assuming also that life forms have always changed as they are changing at present, we come to realize something of the immensity of geologic time required for the evolution of life from its earliest lowly forms up to man.
It is because the onward march of life has taken the same general course the world over that we are able to use it as a UNIVERSAL TIME SCALE and divide geologic time into ages and minor subdivisions according to the ruling or characteristic organisms then living on the earth. Thus, since vertebrates appeared, we have in succession the Age of Fishes, the Age of Amphibians, the Age of Reptiles, and the Age of Mammals.
The chart given on page 295 is thus based on the law of superposition and the law of the evolution of organisms. The first law gives the succession of the formations in local areas. The fossils which they contain demonstrate the law of the progressive appearance of organisms, and by means of this law the formations of different countries are correlated and set each in its place in a universal time scale and grouped together according to the affinities of their imbedded organic remains.
GEOLOGIC TIME DIVISIONS COMPARED WITH THOSE OF HUMAN HISTORY. We may compare the division of geologic time into eras, periods, and other divisions according to the dominant life of the time, to the ill-defined ages into which human history is divided according to the dominance of some nation, ruler, or other characteristic feature. Thus we speak of the DARK AGES, the AGE OF ELIZABETH, and the AGE OF ELECTRICITY. These crude divisions would be of much value if, as in the case of geologic time, we had no exact reckoning of human history by years.
And as the course of human history has flowed in an unbroken stream along quiet reaches of slow change and through periods of rapid change and revolution, so with the course of geologic history. Periods of quiescence, in which revolutionary forces are perhaps gathering head, alternate with periods of comparatively rapid change in physical geography and in organisms, when new and higher forms appear which serve to draw the boundary line of new epochs. Nevertheless, geological history is a continuous progress; its periods and epochs shade into one another by imperceptible gradations, and all our subdivisions must needs be vague and more or less arbitrary.
HOW FOSSILS TELL OF THE GEOGRAPHY OF THE PAST. Fossils are used not only as a record of the development of life upon the earth, but also in testimony to the physical geography of past epochs. They indicate whether in any region the climate was tropical, temperate, or arctic. Since species spread slowly from some center of dispersion where they originate until some barrier limits their migration farther, the occurrence of the same species in rocks of the same system in different countries implies the absence of such barriers at the period. Thus in the collection of antarctic fossils referred to on page 294 there were shallow-water marine shells identical in species with Mesozoic shells found in India and in the southern extremity of South America. Since such organisms are not distributed by the currents of the deep sea and cannot migrate along its bottom, we infer a shallow-water connection in Mesozoic times between India, South America, and the antarctic region. Such a shallow-water connection would be offered along the marginal shelf of a continent uniting these now widely separated countries.
CHAPTER XV THE PRE-CAMBRIAN SYSTEMSTHE EARTH'S BEGINNINGS. The geological record does not tell us of the beginnings of the earth. The history of the planet, as we have every reason to believe, stretches far back beyond the period of the oldest stratified rocks, and is involved in the history of the solar system and of the nebula,—the cloud of glowing gases or of cosmic dust,—from which the sun and planets are believed to have been derived.
THE NEBULAR HYPOTHESIS. It is possible that the earth began as a vaporous, shining sphere, formed by the gathering together of the material of a gaseous ring which had been detached from a cooling and shrinking nebula. Such a vaporous sphere would condense to a liquid, fiery globe, whose surface would become cold and solid, while the interior would long remain intensely hot because of the slow conductivity of the crust. Under these conditions the primeval atmosphere of
Comments (0)