bookssland.com » Science » Disease and Its Causes - William Thomas Councilman (pocket ebook reader .TXT) 📗

Book online «Disease and Its Causes - William Thomas Councilman (pocket ebook reader .TXT) 📗». Author William Thomas Councilman



1 ... 3 4 5 6 7 8 9 10 11 ... 30
Go to page:
subject to arterial disease show senile changes of much the same character as those found in man.

There is another condition which must be considered in a study of causes of age. In the ordinary course of life slight injuries are constantly being received and more or less perfectly repaired. An infection which may but slightly affect the ordinary well-being of the individual may produce a considerable damage. Excess or deficiency or improper food, occasional or continued use of alcohol and other poisons may lead to very definite lesions. Repair after injury is rarely perfect, the repaired tissue is more susceptible to injury, and with advancing age there is constant diminution in the ease and perfection of repair. The effect of the sum of all these changes becomes operative: a vicious circle is established in which injury becomes progressively easier to acquire and repair constantly less perfect. There is some adjustment, however, in that the range of activities is diminished, the environment becomes narrower and the organism adapts its life to that environment which makes the least demands upon it.

Whether there is, entirely apart from all conditions affecting nutrition and the effect of injuries which disturb the usual cell activities, an actual senescence of the cells of the body is uncertain. In the presence of the many factors which influence the obvious diminution of cell activity in the old, it is impossible to say whether the loss of cell activity is intrinsic or extrinsic. The life of the plant cell seems to be immortal; it does not grow old. Trees die owing to accidents or because the tree acquires in the course of its growth a mass of tissue in which there is little or no life, and which becomes the prey of parasites. The growing tissue of a tree is comprised in a thin layer below the bark, and the life of this may seemingly be indefinitely prolonged by placing it in a situation in which it escapes the action of accidental injuries and decay, as by grafting on young trees. Where the nature of the dead wood is such that it is immune from parasites and decay, as in the case of the Sequoias, life seems to be indefinitely prolonged. The growing branches of one of these trees, whose age has been estimated with seeming accuracy at six thousand years, are just as fresh and the tree produces its flowers and fruit in the same degree as a youthful brother of one thousand years. Nor does old age supervene in the unicellular organisms. An amoeba assimilates, grows and multiplies just as long as the environment is favorable.

Old age in itself is seldom a cause of death. In rare cases in the very old a condition is found in which no change is present to which death can be attributed, all organs seem to share alike in the senescence. Death is usually due to some of the accidents of life, a slight infection to which the less resistant body succumbs, or to the rupture of a weakened blood vessel in the brain, or to more advanced decay in some organ whose function is indispensable. The causes and conditions of age have been a fertile source for speculation. Many of the hypotheses have been interesting, that of Metschnikoff, for example, who finds as a dominating influence in causing senescence the absorption of toxic substances formed in the large intestine by certain bacteria. He further finds that the cells of the body which have phagocytic powers turn their activity against cells and tissues which have become weakened. There may be absorption of injurious substances from the intestines which the body in a vigorous condition is able to destroy or to counteract their influence, and these may be more operative in the weaker condition of the body in the old. Phagocytes will remove cells which are dead and often cells which are superfluous in a part, but there is no evidence that this is ever other than a conservative process. Since it is impossible to single out any one condition to which old age is due, the hypothesis of Metschnikoff should have no more regard given it than the many other hypotheses which have been presented.

Death of the body as a whole takes place from the cessation of the action of the central nervous system or of the respiratory system or of the circulation. There are other organs of the body, such as the intestine, kidney, liver, whose function is essential for life, but death does not take place immediately on the cessation of their function. The functions of the heart, the brain and the lungs are intimately associated. Oxygen is indispensable for the life of the tissues, and its supply is dependent upon the integrity of the three organs mentioned, which have been called the tripos of life. Respiration is brought about by the stimulation of certain nerve cells in the brain, the most effective stimulus to these cells being a diminution of oxygen in the blood supplying them. These cells send out impulses to the muscles concerned in inspiration, the chest expands, and air is taken into the lungs. Respiration is then a more complicated process than is the action of the heart, for its contraction, which causes the blood to circulate, is not immediately dependent upon extrinsic influences. Death is usually more immediately due to failure of respiration than to failure of circulation, for the heart often continues beating for a time after respiration has ceased. Thus, in cases of drowning and suffocation, by means of artificial respiration in which air is passively taken into and expelled from the lungs, giving oxygen to the blood, the heart may continue to beat and the circulation continue for hours after all evident signs of life and all sensation has ceased.

By this general death is meant the death of the organism as a whole, but all parts of the body do not die at the same time. The muscles and nerves may react, the heart may be kept beating, and organs of the body when removed and supplied with blood will continue to function. Certain tissues die early, and the first to succumb to the lack of oxygenated blood are the nerve cells of the brain. If respiration and circulation have ceased for as short a time as twelve minutes, life ceases in certain of these cells and cannot be restored. This is again an example of the greater vulnerability of the more highly differentiated structure in which all other forms of cell activity are subordinated to function. There are, however, pretty well authenticated cases of resuscitation after immersion in water for a longer period than twelve minutes, but these cases have not been carefully timed, and time under such conditions may seem longer than it actually is; and there is, moreover, the possibility of a slight gaseous interchange between the blood and the water in the lungs, as in the case of the fish which uses the water for an oxygen supply as the mammal does the air. There are also examples of apparent death or trances which have lasted longer, and the cases of fakirs who have been buried for prolonged periods and again restored to life. In these conditions, however, all the activities of the body are reduced to the utmost, and respiration and circulation, so feeble as to be imperceptible to ordinary observation, suffice to keep the cells living.

With the cessation of life the body is subject to the unmodified action of its physical environment. There is no further production of heat and the body takes the temperature of the surroundings. The only exceptions are rare cases in which such active chemical changes take place in the dead body that heat is generated by chemical action. At a varying interval after death, usually within twelve hours, there is a general contraction and hardening of the muscles due to chemical changes, probably of the nature of coagulation, in them. This begins in the muscles of the head, extends to the extremities, and usually disappears in twenty-four hours. It is always most intense and most rapid in its onset when death is preceded by active muscular exertion. There have been cases of instantaneous death in battle where the body has remained in the position it held at the moment of death, this being due to the instantaneous onset of muscular rigidity. The blood remains fluid for a time after death and settles in the more dependent parts of the body, producing bluish red mottled discolorations. Later the blood coagulates in the vessels. The body loses moisture by evaporation. Drying of the surface takes place where the epidermis is thin, as over the transparent part of the eye and over areas deprived of epidermis. Decomposition and putrefaction of the body due to bacterial action takes place. The bacteria ever present in the alimentary canal make their way from this into the dead tissue. Certain of these bacteria produce gas which accumulates in the tissues and the body often swells enormously. A greenish discoloration appears, which is due to the union of the products of decomposition with the iron in the blood; this is more prominent over the abdomen and appears in lines along the course of the veins. The rapidity with which decomposition takes place varies, and is dependent upon many factors, such as the surrounding temperature, the nutrition of the body at the time of death, the cause of death. It is usually not difficult to recognize that a body is dead. In certain cases, however, the heart's action may be so feeble that no pulse is felt at the wrist, and the current of the expired air may not move a feather held to the nostril or cloud the surface of a mirror by the precipitation of moisture upon it. This condition, combined with unconsciousness and paralysis of all the voluntary muscles, may very closely simulate death. The only absolute evidence of death is given by such changes as loss of body heat, rigor mortis or stiffening of the muscles, coagulation of the blood and decomposition.

Chapter III

The Growth Of The Body.—Growth More Rapid In Embryonic Period.—The Coördination And Regulation Of Growth.—Tumors.—The Growth Of Tumors Compared With Normal Growth.—Size, Shape And Structure Of Tumors.— The Growth Capacity Of Tumors As Shown By The Inoculation Of Tumors Of Mice.—Benign And Malignant Tumors.—Effect Of Inheritance.—Are Tumors Becoming More Frequent?—The Effect Produced By A Tumor On The Individual Who Bears It.—Relation Of Tumors To Age And Sex.—Theories As To The Cause Of Tumors.—The Parasitic Theory.—The Traumatic Theory.—The Embryonic Theory.—The Importance Of The Early Recognition And Removal Of Tumors.

The power of growth is possessed by every living thing, but growth is not limited to the living. Crystals also will grow, and the rapidity and character of growth and the maximum size of the crystal depends upon the character of the substance which forms the crystal. From the single cell or ovum formed by the union of the male and female sexual cells, growth is continuous until a size corresponding to the type of the species is attained. From this time onward growth is limited to the degree necessary to supply the constant loss of material which the body undergoes. The rapidity of the growth of the body and of its component parts differs at different ages, and becomes progressively less active from its beginning in the ovum until the adult type of the species is attained. As determined by the volume, the embryo increases more than ten thousand times in size during the first month of intra-uterine life. At birth the average weight is six and a half pounds; at the end of the first year eighteen and a half pounds, a gain of twelve pounds; at the end of the second year twenty-three pounds, a gain of four and a half pounds. The growth is coördinated, the size of the single organs bearing a definite ratio,

1 ... 3 4 5 6 7 8 9 10 11 ... 30
Go to page:

Free e-book «Disease and Its Causes - William Thomas Councilman (pocket ebook reader .TXT) 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment