A History of Science, vol 3 - Henry Smith Williams (top 10 novels txt) 📗
- Author: Henry Smith Williams
- Performer: -
Book online «A History of Science, vol 3 - Henry Smith Williams (top 10 novels txt) 📗». Author Henry Smith Williams
“A phenomenon not only very difficult to explain under this hypothesis, but one which is even contrary to it, is the slight eccentricity of the planetary orbits.
We know, by the theory of central forces, that if a body moves in a closed orbit around the sun and touches it, it also always comes back to that point at every revolution; whence it follows that if the planets were originally detached from the sun, they would touch it at each return towards it, and their orbits, far from being circular, would be very eccentric. It is true that a mass of matter driven from the sun cannot be exactly compared to a globe which touches its surface, for the impulse which the particles of this mass receive from one another and the reciprocal attractions which they exert among themselves, could, in changing the direction of their movements, remove their perihelions from the sun; but their orbits would be always most eccentric, or at least they would not have slight eccentricities except by the most extraordinary chance. Thus we cannot see, according to the hypothesis of Buffon, why the orbits of more than a hundred comets already observed are so elliptical. This hypothesis is therefore very far from satisfying the preceding phenomena.
Let us see if it is possible to trace them back to their true cause.
“Whatever may be its ultimate nature, seeing that it has caused or modified the movements of the planets, it is necessary that this cause should embrace every body, and, in view of the enormous distances which separate them, it could only have been a fluid of immense extent. In order to have given them an almost circular movement in the same direction around the sun, it is necessary that this fluid should have enveloped the sun as in an atmosphere. The consideration of the planetary movements leads us then to think that, on account of excessive heat, the atmosphere of the sun originally extended beyond the orbits of all the planets, and that it was successively contracted to its present limits.
“In the primitive condition in which we suppose the sun to have been, it resembled a nebula such as the telescope shows is composed of a nucleus more or less brilliant, surrounded by a nebulosity which, on condensing itself towards the centre, forms a star. If it is conceived by analogy that all the stars were formed in this manner, it is possible to imagine their previous condition of nebulosity, itself preceded by other states in which the nebulous matter was still more diffused, the nucleus being less and less luminous. By going back as far as possible, we thus arrive at a nebulosity so diffused that its existence could hardly be suspected.
“For a long time the peculiar disposition of certain stars, visible to the unaided eye, has struck philosophical observers. Mitchell has already remarked how little probable it is that the stars in the Pleiades, for example, could have been contracted into the small space which encloses them by the fortuity of chance alone, and he has concluded that this group of stars, and similar groups which the skies present to us, are the necessary result of the condensation of a nebula, with several nuclei, and it is evident that a nebula, by continually contracting, towards these various nuclei, at length would form a group of stars similar to the Pleiades. The condensation of a nebula with two nuclei would form a system of stars close together, turning one upon the other, such as those double stars of which we already know the respective movements.
“But how did the solar atmosphere determine the movements of the rotation and revolution of the planets and satellites? If these bodies had penetrated very deeply into this atmosphere, its resistance would have caused them to fall into the sun. We can therefore conjecture that the planets were formed at their successive limits by the condensation of a zone of vapors which the sun, on cooling, left behind, in the plane of his equator.
“Let us recall the results which we have given in a preceding chapter. The atmosphere of the sun could not have extended indefinitely. Its limit was the point where the centrifugal force due to its movement of rotation balanced its weight. But in proportion as the cooling contracted the atmosphere, and those molecules which were near to them condensed upon the surface of the body, the movement of the rotation increased; for, on account of the Law of Areas, the sum of the areas described by the vector of each molecule of the sun and its atmosphere and projected in the plane of the equator being always the same, the rotation should increase when these molecules approach the centre of the sun. The centrifugal force due to this movement becoming thus larger, the point where the weight is equal to it is nearer the sun. Supposing, then, as it is natural to admit, that the atmosphere extended at some period to its very limits, it should, on cooling, leave molecules behind at this limit and at limits successively occasioned by the increased rotation of the sun. The abandoned molecules would continue to revolve around this body, since their centrifugal force was balanced by their weight. But this equilibrium not arising in regard to the atmospheric molecules parallel to the solar equator, the latter, on account of their weight, approached the atmosphere as they condensed, and did not cease to belong to it until by this motion they came upon the equator.
“Let us consider now the zones of vapor successively left behind. These zones ought, according to appearance, by the condensation and mutual attraction of their molecules, to form various concentric rings of vapor revolving around the sun. The mutual gravitational friction of each ring would accelerate some and retard others, until they had all acquired the same angular velocity. Thus the actual velocity of the molecules most removed from the sun would be the greatest. The following cause would also operate to bring about this difference of speed. The molecules farthest from the sun, and which by the effects of cooling and condensation approached one another to form the outer part of the ring, would have always described areas proportional to the time since the central force by which they were controlled has been constantly directed towards this body. But this constancy of areas necessitates an increase of velocity proportional to the distance. It is thus seen that the same cause would diminish the velocity of the molecules which form the inner part of the ring.
“If all the molecules of the ring of vapor continued to condense without disuniting, they would at length form a ring either solid or fluid. But this formation would necessitate such a regularity in every part of the ring, and in its cooling, that this phenomenon is extremely rare; and the solar system affords us, indeed, but one example—namely, in the ring of Saturn.
In nearly every case the ring of vapor was broken into several masses, each moving at similar velocities, and continuing to rotate at the same distance around the sun. These masses would take a spheroid form with a rotatory movement in the direction of the revolution, because their inner molecules had less velocity than the outer. Thus were formed so many planets in a condition of vapor. But if one of them were powerful enough to reunite successively by its attraction all the others around its centre of gravity, the ring of vapor would be thus transformed into a single spheroidical mass of vapor revolving around the sun with a rotation in the direction of its revolution. The latter case has been that which is the most common, but nevertheless the solar system affords us an instance of the first case in the four small planets which move between Jupiter and Mars; at least, if we do not suppose, as does M. Olbers, that they originally formed a single planet which a mighty explosion broke up into several portions each moving at different velocities.
“According to our hypothesis, the comets are strangers to our planetary system. In considering them, as we have done, as minute nebulosities, wandering from solar system to solar system, and formed by the condensation of the nebulous matter everywhere existent in profusion in the universe, we see that when they come into that part of the heavens where the sun is all-powerful, he forces them to describe orbits either elliptical or hyperbolic, their paths being equally possible in all directions, and at all inclinations of the ecliptic, conformably to what has been observed. Thus the condensation of nebulous matter, by which we have at first explained the motions of the rotation and revolution of the planets and their satellites in the same direction, and in nearly approximate planes, explains also why the movements of the comets escape this general law.”[3]
The nebular hypothesis thus given detailed completion by Laplace is a worthy complement of the grand cosmologic scheme of Herschel. Whether true or false, the two conceptions stand as the final contributions of the eighteenth century to the history of man’s ceaseless efforts to solve the mysteries of cosmic origin and cosmic structure. The world listened eagerly and without prejudice to the new doctrines; and that attitude tells of a marvellous intellectual growth of our race. Mark the transition. In the year 1600, Bruno was burned at the stake for teaching that our earth is not the centre of the universe. In 1700, Newton was pronounced “impious and heretical” by a large school of philosophers for declaring that the force which holds the planets in their orbits is universal gravitation. In 1800, Laplace and Herschel are honored for teaching that gravitation built up the system which it still controls; that our universe is but a minor nebula, our sun but a minor star, our earth a mere atom of matter, our race only one of myriad races peopling an infinity of worlds. Doctrines which but the span of two human lives before would have brought their enunciators to the stake were now pronounced not impious, but sublime.
ASTEROIDS AND SATELLITESThe first day of the nineteenth century was fittingly signalized by the discovery of a new world. On the evening of January 1, 1801, an Italian astronomer, Piazzi, observed an apparent star of about the eighth magnitude (hence, of course, quite invisible to the unaided eye), which later on was seen to have moved, and was thus shown to be vastly nearer the earth than any true star. He at first supposed, as Herschel had done when he first saw Uranus, that the unfamiliar body was a comet; but later observation proved it a tiny planet, occupying a position in space between Mars and Jupiter. It was christened Ceres, after the tutelary goddess of Sicily.
Though unpremeditated, this discovery was not unexpected, for astronomers had long surmised the existence of a planet in the wide gap between Mars and Jupiter.
Indeed, they were even preparing to make concerted search for it, despite the protests of philosophers, who argued that the planets could not possibly exceed the magic number seven, when Piazzi forestalled their efforts. But a surprise came with the sequel; for the very next year Dr. Olbers, the wonderful physician-astronomer of Bremen, while following up the course of Ceres, happened on another tiny moving star, similarly located, which soon revealed itself as planetary.
Thus two planets were found where only one was expected.
The existence of the supernumerary was a puzzle, but Olbers solved it for the moment by suggesting that Ceres and Pallas, as he called his captive, might be fragments of a quondam planet, shattered by internal explosion or by the impact of a comet. Other similar fragments, he ventured to predict, would be found when searched for. William Herschel
Comments (0)