bookssland.com » Science » The Story of the Heavens - Sir Robert Stawell Ball (ebook reader for laptop .TXT) 📗

Book online «The Story of the Heavens - Sir Robert Stawell Ball (ebook reader for laptop .TXT) 📗». Author Sir Robert Stawell Ball



1 ... 66 67 68 69 70 71 72 73 74 ... 97
Go to page:
return; while others would be driven into elliptic paths. Round the sun these objects would revolve for ages, but at each revolution--and here is the important point--they would traverse the point from which they were originally launched. In other words, every object so projected from the earth would at each revolution cross the track of the earth. We have in this fact an enormous probability in favour of the earth as contrasted with Ceres. Only one Ceres-ejected meteorite out of every 50,000 would probably cross the earth's track, while every earth-projected meteorite would necessarily do so.

If this view be true, then there must be hosts of meteorites traversing space in elliptic orbits around the sun. These orbits have one feature in common: they all intersect the track of the earth. It will sometimes happen that the earth is found at this point at the moment the meteorite is crossing; when this is the case the long travels of the little body are at an end, and it tumbles back on the earth from which it parted so many ages ago.

It is well to emphasise the contrast between the lunar theory of meteorites (which we think improbable) and the terrestrial theory (which appears to be probable). For the lunar theory it would, as we have seen, be necessary that some of the lunar volcanoes should be still active. In the terrestrial theory it is only necessary to suppose that the volcanoes on the earth once possessed sufficient explosive power. No one supposes that the volcanoes at present on the earth eject now the fragments which are to form future meteorites; but it seems possible that the earth may be now slowly gathering back, in these quiet times, the fragments she ejected in an early stage of her history. Assuming, therefore, with Tschermak, that many meteorites have had a volcanic origin on some considerable celestial body, we are led to agree with those who think that most probably that body is the earth.

It is interesting to notice a few circumstances which seem to corroborate the view that many meteorites are of ancient terrestrial origin. The most characteristic constituent of these bodies is the alloy of iron and nickel, which is almost universally present. Sometimes, as in the Rowton siderite, the whole object consists of little else; sometimes this alloy is in grains distributed through the mass. When Nordenskjoeld discovered in Greenland a mass of native iron containing nickel, this was at once regarded as a celestial visitor. It was called the Ovifak meteorite, and large pieces of the iron were conveyed to our museums. There is, for instance, in the national collection a most interesting exhibit of the Ovifak substance. Close examination shows that this so-called meteorite lies in a bed of basalt which has been vomited from the interior of the earth. Those who believe in the meteoric origin of the Ovifak iron are constrained to admit that shortly after the eruption of the basalt, and while it was still soft, this stupendous iron meteorite of gigantic mass and bulk happened to fall into this particular soft bed. The view is, however, steadily gaining ground that this great iron mass was no celestial visitor at all, but that it simply came forth from the interior of the earth with the basalt itself. The beautiful specimens in the British Museum show how the iron graduates into the basalt in such a way as to make it highly probable that the source of the iron is really to be sought in the earth and not external thereto. Should further research establish this, as now seems probable, a most important step will have been taken in proving the terrestrial origin of meteorites. If the Ovifak iron be really associated with the basalt, we have a proof that the iron-nickel alloy is indeed a terrestrial substance, found deep in the interior of the earth, and associated with volcanic phenomena. This being so, it will be no longer difficult to account for the iron in undoubted meteorites. When the vast volcanoes were in activity they ejected masses of this iron-alloy, which, having circulated round the sun for ages, have at last come back again. As if to confirm this view, Professor Andrews discovered particles of native iron in the basalt of the Giant's Causeway, while the probability that large masses of iron are there associated with the basaltic formation was proved by the researches on magnetism of the late Provost Lloyd.

Besides the more solid meteorites there can be no doubt that the _debris_ of the ordinary shooting stars must rain down upon the earth in gentle showers of celestial dust. The snow in the Arctic regions has often been found stained with traces of dust which contains particles of iron. Similar particles have been found on the towers of cathedrals and in many other situations where it could only have been deposited from the air. There can be hardly a doubt that some of the motes in the sunbeam, and many of the particles which good housekeepers abhor as dust, have indeed a cosmical origin. In the famous cruise of the _Challenger_ the dredges brought up from the depths of the Atlantic no "wedges of gold, great anchors, heaps of pearl," but among the mud which they raised are to be found numerous magnetic particles which there is every reason to believe fell from the sky, and thence subsided to the depths of the ocean. Sand from the deserts of Africa, when examined under the microscope, yield traces of minute iron particles which bear the marks of having experienced a high temperature.

The earth draws in this cosmic dust continuously, but the earth now never parts with a particle of its mass. The consequence is inevitable; the mass of the earth must be growing, and though the change may be a small one, yet to those who have studied Darwin's treatise on "Earth-worms," or to those who are acquainted with the modern theory of evolution, it will be manifest that stupendous results can be achieved by slight causes which tend in one direction. It is quite probable that an appreciable part of the solid substance of our globe may have been derived from meteoric matter which descends in perennial showers upon its surface.


CHAPTER XVIII.


THE STARRY HEAVENS.





The Constellations--The Great Bear and the Pointers--The Pole
Star--Cassiopeia--Andromeda, Pegasus, and Perseus--The Pleiades:
Auriga, Capella, Aldebaran--Taurus, Orion, Sirius; Castor and
Pollux--The Lion--Booetes, Corona, and Hercules--Virgo and
Spica--Vega and Lyra--The Swan.





The student of astronomy should make himself acquainted with the principal constellations in the heavens. This is a pleasing acquirement, and might well form a part of the education of every child in the kingdom. We shall commence our discussion of the sidereal system with a brief account of the principal constellations visible in the northern hemisphere, and we accompany our description with such outline maps of the stars as will enable the beginner to identify the chief features of the starry heavens.

In an earlier chapter we directed the attention of the student to the remarkable constellation of stars which is known to astronomers as Ursa Major, or the Great Bear. It forms the most conspicuous group in the northern skies, and in northern latitudes it never sets. At eleven p.m. in the month of April the Great Bear is directly overhead (for an observer in the United Kingdom); at the same hour in September it is low down in the north; at the same hour July it is in the west; by Christmas it is at the east. From the remotest antiquity this group of stars has attracted attention. The stars in the Great Bear were comprised in a great catalogue of stars, made two thousand years ago, which has been handed down to us. From the positions of the stars given in this catalogue it is possible to reconstruct the Great Bear as it appeared in those early days. This has been done, and it appears that the seven principal stars have not changed in this lapse of time to any large extent, so that the configuration of the Great Bear remains practically the same now as it was then. The beginner must first obtain an acquaintance with this group of seven stars, and then his further progress in this branch of astronomy will be greatly facilitated. The Great Bear is, indeed, a splendid constellation, and its only rival is to be found in Orion, which contains more brilliant stars, though it does not occupy so large a region in the heavens.

In the first place, we observe how the Great Bear enables the Pole Star, which is the most important object in the northern heavens, to be readily found. The Pole Star is very conveniently indicated by the direction of the two stars, b and a, of the Great Bear, which are, accordingly, generally known as the "pointers." This use of the Great Bear is shown on the diagram in Fig. 80, in which the line b a, produced onwards and slightly curved, will conduct to the Pole Star. There is no likelihood of making any mistake in this star, as it is the only bright one in the neighbourhood. Once it has been seen it will be readily identified on future occasions, and the observer will not fail to notice how constant is the position which it preserves in the heavens. The other stars either rise or set, or, like the Great Bear, they dip down low in the north without actually setting, but the Pole Star exhibits no considerable changes. In summer or winter, by night or by day, the Pole Star is ever found in the same place--at least, so far as ordinary observation is concerned. No doubt, when we use the accurate instruments of the observatory the notion of the fixity of the Pole Star is abandoned; we then see that it has a slow motion, and that it describes a small circle every twenty-four hours around the true pole of the heavens, which is not coincident with the Pole Star, though closely adjacent thereto. The distance is at present a little more than a degree, and it is gradually lessening, until, in the year A.D. 2095, the distance will be under half a degree.

The Pole Star itself belongs to another inconsiderable group of stars known as the Little Bear. The two principal members of this group, next in brightness to the Pole Star, are sometimes called the "Guards." The Great Bear and the Little Bear, with the Pole Star, form a group in the northern sky not paralleled by any similarly situated constellation in the southern heavens. At the South Pole there is no conspicuous star to indicate its position approximately--a circumstance disadvantageous to astronomers and navigators in the southern hemisphere.

It will now be easy to add a third constellation to the two already acquired. On the opposite side of the Pole Star to the Great Bear, and at about the same distance, lies a very pleasing group of five bright stars, forming a W. These are the more conspicuous members of the constellation Cassiopeia, which contains altogether about sixty stars visible to the naked eye. When the Great Bear is low down in the north, then Cassiopeia is high overhead. When the Great Bear is high overhead, then Cassiopeia is to be looked for low down in the north. The configuration of the leading stars is so striking that once the eye has recognised them future identification will be very easy--the more so when it is borne in mind that the Pole Star lies midway between Cassiopeia and the Great Bear (Fig. 81). These important constellations will serve as guides to the rest. We shall accordingly show how the learner may distinguish the various other groups

1 ... 66 67 68 69 70 71 72 73 74 ... 97
Go to page:

Free e-book «The Story of the Heavens - Sir Robert Stawell Ball (ebook reader for laptop .TXT) 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment