bookssland.com » Science » The Elements of Geology - William Harmon Norton (best beach reads TXT) 📗

Book online «The Elements of Geology - William Harmon Norton (best beach reads TXT) 📗». Author William Harmon Norton



1 ... 4 5 6 7 8 9 10 11 12 ... 53
Go to page:
in France where wells of this kind have been long in use. The rise of the water in artesian wells, and in fissure springs also, depends on the following conditions illustrated in Figure 29. The aquifer dips toward the region of the wells from higher ground, where it outcrops and receives its water. It is inclosed between an impervious layer above and water- tight or water-logged layers beneath. The weight of the column of water thus inclosed in the aquifer causes water to rise in the well, precisely as the weight of the water in a standpipe forces it in connected pipes to the upper stories of buildings.

Which will supply the larger region with artesian wells, an aquifer whose dip is steep or one whose dip is gentle? Which of the two aquifers, their thickness being equal, will have the larger outcrop and therefore be able to draw upon the larger amount of water from the rainfall? Illustrate with diagrams.

THE ZONE OF SOLUTION. Near the surface, where the circulation of ground water is most active, it oxidizes, corrodes, and dissolves the rocks through which it passes. It leaches soils and subsoils of their lime and other soluble minerals upon which plants depend for their food. It takes away the soluble cements of rocks; it widens fissures and joints and opens winding passages along the bedding planes; it may even remove whole beds of soluble rocks, such as rock salt, limestone, or gypsum. The work of ground water in producing landslides has already been noticed. The zone in which the work of ground water is thus for the most part destructive we may call the zone of solution.

CAVES. In massive limestone rocks, ground water dissolves channels which sometimes form large caves (Fig. 30). The necessary conditions for the excavation of caves of great size are well shown in central Kentucky, where an upland is built throughout of thick horizontal beds of limestone. The absence of layers of insoluble or impervious rock in its structure allows a free circulation of ground water within it by the way of all natural openings in the rock. These water ways have been gradually enlarged by solution and wear until the upland is honeycombed with caves. Five hundred open caverns are known in one county.

Mammoth Cave, the largest of these caverns, consists of a labyrinth of chambers and winding galleries whose total length is said to be as much as thirty miles. One passage four miles long has an average width of about sixty feet and an average height of forty feet. One of the great halls is three hundred feet in width and is overhung by a solid arch of limestone one hundred feet above the floor. Galleries at different levels are connected by well-like pits, some of which measure two hundred and twenty-five feet from top to bottom. Through some of the lowest of these tunnels flows Echo River, still at work dissolving and wearing away the rock while on its dark way to appear at the surface as a great spring.

NATURAL BRIDGES. As a cavern enlarges and the surface of the land above it is lowered by weathering, the roof at last breaks down and the cave becomes an open ravine. A portion of the roof may for a while remain, forming a "natural bridge."

SINK HOLES. In limestone regions channels under ground may become so well developed that the water of rains rapidly drains away through them. Ground water stands low and wells must be sunk deep to find it. Little or no surface water is left to form brooks.

Thus across the limestone upland of central Kentucky one meets but three surface streams in a hundred miles. Between their valleys surface water finds its way underground by means of sink holes. These are pits, commonly funnel shaped, formed by the enlargement of crevice or joint by percolating water, or by the breakdown of some portion of the roof of a cave. By clogging of the outlet a sink hole may come to be filled by a pond.

Central Florida is a limestone region with its drainage largely subterranean and in part below the level even of the sea. Sink holes are common, and many of them are occupied by lakelets. Great springs mark the point of issue of underground streams, while some rise from beneath the sea. Silver Spring, one of the largest, discharges from a basin eight hundred feet wide and thirty feet deep a little river navigable for small steamers to its source. About the spring there are no surface streams for sixty miles.

THE KARST. Along the eastern coast of the Adriatic, as far south as Montenegro, lies a belt of limestone mountains singularly worn and honeycombed by the solvent action of water. Where forests have been cut from the mountain sides and the red soil has washed away, the surface of the white limestone forms a pathless desert of rock where each square rod has been corroded into an intricate branch work of shallow furrows and sharp ridges. Great sink holes, some of them six hundred feet deep and more, pockmark the surface of the land. The drainage is chiefly subterranean. Surface streams are rare and a portion of their courses is often under ground. Fragmentary valleys come suddenly to an end at walls of rock where the rivers which occupy the valleys plunge into dark tunnels to reappear some miles away. Ground water stands so far below the surface that it cannot be reached by wells, and the inhabitants depend on rain water stored for household uses. The finest cavern of Europe, the Adelsberg Grotto, is in this region. Karst, the name of a part of this country, is now used to designate any region or landscape thus sculptured by the chemical action of surface and ground water. We must remember that Karst regions are rare, and striking as is the work of their subterranean streams, it is far less important than the work done by the sheets of underground water slowly seeping through all subsoils and porous rocks in other regions.

Even when gathered into definite channels, ground water does not have the erosive power of surface streams, since it carries with it little or no rock waste. Regions whose underground drainage is so perfect that the development of surface streams has been retarded or prevented escape to a large extent the leveling action of surface running waters, and may therefore stand higher than the surrounding country. The hill honeycombed by Luray Cavern, Virginia, has been attributed to this cause.

CAVERN DEPOSITS. Even in the zone of solution water may under certain circumstances deposit as well as erode. As it trickles from the roof of caverns, the lime carbonate which it has taken into solution from the layers of limestone above is deposited by evaporation in the air in icicle-like pendants called STALACTITES. As the drops splash on the floor there are built up in the same way thicker masses called STALAGMITES, which may grow to join the stalactites above, forming pillars. A stalagmitic crust often seals with rock the earth which accumulates in caverns, together with whatever relics of cave dwellers, either animals or men, it may contain.

Can you explain why slender stalactites formed by the drip of single drops are often hollow pipes?

THE ZONE OF CEMENTATION. With increasing depth subterranean water becomes more and more sluggish in its movements and more and more highly charged with minerals dissolved from the rocks above. At such depths it deposits these minerals in the pores of rocks, cementing their grains together, and in crevices and fissures, forming mineral veins. Thus below the zone of solution where the work of water is to dissolve, lies the zone of cementation where its work is chemical deposit. A part of the invisible load of waste is thus transferred from rocks near the surface to those at greater depths.

As the land surface is gradually lowered by weathering and the work of rain and streams, rocks which have lain deep within the zone of cementation are brought within the zone of solution. Thus there are exposed to view limestones, whose cracks were filled with calcite (crystallized carbonate of lime), with quartz or other minerals, and sandstones whose grains were well cemented many feet below the surface.

CAVITY FILLING. Small cavities in the rocks are often found more or less completely filled with minerals deposited from solution by water in its constant circulation underground. The process may be illustrated by the deposit of salt crystals in a cup of evaporating brine, but in the latter instance the solution is not renewed as in the case of cavities in the rocks. A cavity thus lined with inward-pointing crystals is called a GEODE.

CONCRETIONS. Ground water seeping through the pores of rocks may gather minerals disseminated throughout them into nodular masses called concretions. Thus silica disseminated through limestone is gathered into nodules of flint. While geodes grow from the outside inwards, concretions grow outwards from the center. Nor are they formed in already existing cavities as are geodes. In soft clays concretions may, as they grow, press the clay aside. In many other rocks concretions are made by the process of REPLACEMENT. Molecule by molecule the rock is removed and the mineral of the concretion substituted in its place. The concretion may in this way preserve intact the lamination lines or other structures of the rock. Clays and shales often contain concretions of lime carbonate, of iron carbonate, or of iron sulphide. Some fossil, such as a leaf or shell, frequently forms the nucleus around which the concretion grows.

Why are building stones more easily worked when "green" than after their quarry water has dried out?

DEPOSITS OF GROUND WATER IN ARID REGIONS. In arid lands where ground water is drawn by capillarity to the surface and there evaporates, it leaves as surface incrustations the minerals held in solution. White limy incrustations of this nature cover considerable tracts in northern Mexico. Evaporating beneath the surface, ground water may deposit a limy cement in beds of loose sand and gravel. Such firmly cemented layers are not uncommon in western Kansas and Nebraska, where they are known as "mortar beds."

THERMAL SPRINGS. While the lower limit of surface drainage is sea level, subterranean water circulates much below that depth, and is brought again to the surface by hydrostatic pressure. In many instances springs have a higher temperature than the average annual temperature of the region, and are then known as thermal springs. In regions of present or recent volcanic activity, such as the Yellowstone National Park, we may believe that the heat of thermal springs is derived from uncooled lavas, perhaps not far below the surface. But when hot springs occur at a distance of hundreds of miles from any volcano, as in the case of the hot springs of Bath, England, it is probable that their waters have risen from the heated rocks of the earth's interior. The springs of Bath have a temperature of 120 degrees F., 70 degrees above the average annual temperature of the place. If we assume that the rate of increase in the earth's internal heat is here the average rate, 1 degree F. to every sixty feet of descent, we may conclude that the springs of Bath rise from at least a depth of forty-two hundred feet.

Water may descend to depths from which it can never be brought back by hydrostatic pressure. It is absorbed by highly heated rocks deep below the surface. From time to time some of this deep- seated water may be returned to open air in the steam of volcanic eruptions.

SURFACE DEPOSITS OF SPRINGS. Where subterranean water returns to the surface highly charged with minerals in solution, on exposure to the air it is commonly compelled to lay down much of its invisible load in chemical deposits about the spring. These are thrown down from solution either because of cooling, evaporation, the loss of carbon dioxide, or the work of algae.

Many springs have been charged under pressure with carbon dioxide from subterranean sources and are able therefore to take up large quantities of lime carbonate from the limestone rocks through which they pass. On reaching the surface the pressure is relieved, the gas escapes, and the lime carbonate is thrown down in deposits called TRAVERTINE. The gas is sometimes withdrawn and the deposit produced in large part by the action of algae and other humble forms of plant life.

At the Mammoth Hot Springs in the valley of the Gardiner River, Yellowstone National Park, beautiful terraces and basins of travertine are now building, chiefly by means of algae which cover the bottoms, rims, and sides of the basins and deposit lime carbonate upon them in successive sheets. The rock, snow-white where dry, is coated with red and orange gelatinous mats where the algae thrive in the over-flowing waters.

Similar terraces of travertine are found to a height of fourteen hundred feet up the valley side. We may infer that the

1 ... 4 5 6 7 8 9 10 11 12 ... 53
Go to page:

Free e-book «The Elements of Geology - William Harmon Norton (best beach reads TXT) 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment