The Story of the Heavens - Sir Robert Stawell Ball (ebook reader for laptop .TXT) 📗
- Author: Sir Robert Stawell Ball
Book online «The Story of the Heavens - Sir Robert Stawell Ball (ebook reader for laptop .TXT) 📗». Author Sir Robert Stawell Ball
the admiration of every one who looks at this interesting spectacle in a good instrument.
There can be no better method of expounding the rather difficult subject of spectrum analysis than by actually following the steps of the original discovery which first gave a clear demonstration of the significance of the dark "Fraunhofer" lines. Let us concentrate our attention specially upon that line of the solar spectrum marked D. This, when seen in the spectroscope, is found to consist of two lines, very delicately separated by a minute interval, one of these lines being slightly thicker than the other. Suppose that while the attention is concentrated on these lines the flame of an ordinary spirit-lamp coloured by common salt be held in front of the instrument, so that the ray of direct solar light passes through the flame before entering the spectroscope. The observer sees at once the two lines known as D flash out with a greatly increased blackness and vividness, while there is no other perceptible effect on the spectrum. A few trials show that this intensification of the D lines is due to the vapour of sodium arising from the salt burning in the lamp through which the sunlight has passed.
It is quite impossible that this marvellous connection between sodium and the D lines of the spectrum can be merely casual. Even if there were only a single line concerned, it would be in the highest degree unlikely that the coincidence should arise by accident; but when we find the sodium affecting both of the two close lines which form D, our conviction that there must be some profound connection between these lines and sodium rises to absolute certainty. Suppose that the sunlight be cut off, and that all other light is excluded save that emanating from the glowing vapour of sodium in the spirit flame. We shall then find, on looking through the spectroscope, that we no longer obtain all the colours of the rainbow; the light from the sodium is concentrated into two bright yellow lines, filling precisely the position which the dark D lines occupied in the solar spectrum, and the darkness of which the sodium flame seemed to intensify.
We must here endeavour to remove what may at first sight appear to be a paradox. How is it, that though the sodium flame produces two _bright_ lines when viewed in the absence of other light, yet it actually appears to intensify the two _dark_ lines in the sun's spectrum? The explanation of this leads us at once to the cardinal doctrine of spectrum analysis. The so-called dark lines in the solar spectrum are only dark _by contrast_ with the brilliant illumination of the rest of the spectrum. A good deal of solar light really lies in the dark lines, though not enough to be seen when the eye is dazzled by the brilliancy around. When the flame of the spirit-lamp charged with sodium intervenes, it sends out a certain amount of light, which is entirely localised in these two lines. So far it would seem that the influence of the sodium flame ought to be manifested in diminishing the darkness of the lines and rendering them less conspicuous. As a matter of fact, they are far more conspicuous with the sodium flame than without it. This arises from the fact that the sodium flame possesses the remarkable property of cutting off the sunlight which was on its way to those particular lines; so that, though the sodium contributes some light to the lines, yet it intercepts a far greater quantity of the light that would otherwise have illuminated those lines, and hence they became darker with the sodium flame than without it.
We are thus conducted to a remarkable principle, which has led to the interpretation of the dark lines in the spectrum of the sun. We find that when the sodium vapour is heated, it gives out light of a very particular type, which, viewed through the prism, is concentrated in two lines. But the sodium vapour possesses also this property, that light from the sun can pass through it without any perceptible absorption, except of those particular rays which are of the same characters as the two lines in question. In other words, we say that if the heated vapour of a substance gives a spectrum of bright lines, corresponding to lights of various kinds, this same vapour will act as an opaque screen to lights of those special kinds, while remaining transparent to light of every other description.
This principle is of such importance in the theory of spectrum analysis that we add a further example. Let us take the element iron, which in a very striking degree illustrates the law in question. In the solar spectrum some hundreds of the dark lines are known to correspond with the spectrum of iron. This correspondence is exhibited in a vivid manner when, by a suitable contrivance, the light of an electric spark from poles of iron is examined in the spectroscope side by side with the solar spectrum. The iron lines in the sun are identical in position with the lines in the spectrum of glowing iron vapour. But the spectrum of iron, as here described, consists of bright lines; while those with which it is compared in the sun are dark on a bright background. They can be completely understood if we suppose the vapour arising from intensely heated iron to be present in the atmosphere which surrounds the luminous strata on the sun. This vapour would absorb or stop precisely the same rays as it emits when incandescent, and hence we learn the important fact that iron, no less than sodium, must, in one form or another, be a constituent of the sun.
Such is, in brief outline, the celebrated discovery of modern times which has given an interpretation to the dark lines of the solar spectrum. The spectra of a large number of terrestrial substances have been examined in comparison with the solar spectrum, and thus it has been established that many of the elements known on the earth are present in the sun. We may mention calcium, iron, hydrogen, sodium, carbon, nickel, magnesium, cobalt, aluminium, chromium, strontium, manganese, copper, zinc, cadmium, silver, tin, lead, potassium. Some of the elements which are of the greatest importance on the earth would appear to be missing from the sun. Sulphur, phosphorus, mercury, gold, nitrogen may be mentioned among the elements which have hitherto given no indication of their being solar constituents.
It is also possible that the lines of a substance in the sun's atmosphere may be so very bright that the light of the continuous spectrum, on which they are superposed, is not able to "reverse" them--_i.e._ turn them into dark lines. We know, for instance, that the bright lines of sodium vapour may be made so intensely bright that the spectrum of an incandescent lime-cylinder placed behind the sodium vapour does not reverse these lines. If, then, we make the sodium lines fainter, they may be reduced to exactly the intensity prevailing in that part of the spectrum of the lime-light, in which case the lines, of course, could not be distinguished. The question as to what elements are really missing from the sun must therefore, like many other questions concerning our great luminary, at present be considered an open one. We shall shortly see that an element previously unknown has actually been discovered by means of a line representing it in the solar spectrum.
Let us now return to the sun-spots and see what the spectroscope can teach us as to their nature. We attach a powerful spectroscope to the eye-end of a telescope in order to get as much light as possible concentrated on the slit; the latter has therefore to be placed exactly at the focus of the object-glass. The instrument is then pointed to a spot, so that its image falls on the slit, and the presence of the dark central part called the _umbra_ reveals itself by a darkish stripe which traverses the ordinary sun-spectrum from end to end. It is bordered on both sides by the spectrum of the _penumbra_, which is much brighter than that of the umbra, but fainter than that of the adjoining regions of the sun.
From the fact that the spectrum is darkened we learn that there is considerable general absorption of light in the umbra. This absorption is not, however, such as would be caused by the presence of volumes of minute solid or liquid particles like those which constitute smoke or cloud. This is indicated by the fact, first discovered by Young in 1883, that the spectrum is not uniformly darkened as it would be if the absorption were caused by floating particles. In the course of examination of many large and quiescent spots, he perceived that the middle green part of the spectrum was crossed by countless fine, dark lines, generally touching each other, but here and there separated by bright intervals. Each line is thicker in the middle (corresponding to the centre of the spot) and tapers to a fine thread at each end; indeed, most of these lines can be traced across the spectrum of the penumbra and out on to that of the solar surface. The absorption would therefore seem to be caused by gases at a much lower temperature than that of the gases present outside the spot.
In the red and yellow parts of the spot-spectrum, which have been specially studied for many years by Sir Norman Lockyer at the South Kensington Observatory, interesting details are found which confirm this conclusion. Many of the dark lines are not thicker and darker in the spot than they are in the ordinary sun-spectrum, while others are very much thickened in the spot-spectrum, such as the lines of iron, calcium, and sodium. The sodium lines are sometimes both widened and doubly reversed--that is, on the thick dark line a bright line is superposed. The same peculiarity is not seldom seen in the notable calcium lines H and K at the violet end of the spectrum. These facts indicate the presence of great masses of the vapours of sodium and calcium over the nucleus. The observations at South Kensington have also brought to light another interesting peculiarity of the spot-spectra. At the time of minimum frequency of spots the lines of iron and other terrestrial elements are prominent among the most widened lines; at the maxima these almost vanish, and the widening is found only amongst lines of unknown origin.
The spectroscope has given us the means of studying other interesting features on the sun, which are so faint that in the full blaze of sunlight they cannot be readily observed with a mere telescope. We can, however, see them easily enough when the brilliant body of the sun is obscured during the rare occurrence of a total eclipse. The conditions necessary for the occurrence of an eclipse will be more fully considered in the next chapter. For the present it will be sufficient to observe that by the movement of the moon it may so happen that the moon completely hides the sun, and thus for certain parts of the earth produces what we call a total eclipse. The few minutes during which a total eclipse lasts are of much interest to the astronomer. Darkness reigns over the landscape, and in that darkness rare and beautiful sights are witnessed.
We have in Fig. 19 a diagram of a total eclipse, showing some of the remarkable objects known as prominences (_a_, _b_, _c_, _d_, _e_) which project from behind the dark body of the moon. That they do not belong to the moon, but are solar appendages of some sort, is easily demonstrated. They first appear on the eastern limb at the commencement of totality. Those first seen are gradually
There can be no better method of expounding the rather difficult subject of spectrum analysis than by actually following the steps of the original discovery which first gave a clear demonstration of the significance of the dark "Fraunhofer" lines. Let us concentrate our attention specially upon that line of the solar spectrum marked D. This, when seen in the spectroscope, is found to consist of two lines, very delicately separated by a minute interval, one of these lines being slightly thicker than the other. Suppose that while the attention is concentrated on these lines the flame of an ordinary spirit-lamp coloured by common salt be held in front of the instrument, so that the ray of direct solar light passes through the flame before entering the spectroscope. The observer sees at once the two lines known as D flash out with a greatly increased blackness and vividness, while there is no other perceptible effect on the spectrum. A few trials show that this intensification of the D lines is due to the vapour of sodium arising from the salt burning in the lamp through which the sunlight has passed.
It is quite impossible that this marvellous connection between sodium and the D lines of the spectrum can be merely casual. Even if there were only a single line concerned, it would be in the highest degree unlikely that the coincidence should arise by accident; but when we find the sodium affecting both of the two close lines which form D, our conviction that there must be some profound connection between these lines and sodium rises to absolute certainty. Suppose that the sunlight be cut off, and that all other light is excluded save that emanating from the glowing vapour of sodium in the spirit flame. We shall then find, on looking through the spectroscope, that we no longer obtain all the colours of the rainbow; the light from the sodium is concentrated into two bright yellow lines, filling precisely the position which the dark D lines occupied in the solar spectrum, and the darkness of which the sodium flame seemed to intensify.
We must here endeavour to remove what may at first sight appear to be a paradox. How is it, that though the sodium flame produces two _bright_ lines when viewed in the absence of other light, yet it actually appears to intensify the two _dark_ lines in the sun's spectrum? The explanation of this leads us at once to the cardinal doctrine of spectrum analysis. The so-called dark lines in the solar spectrum are only dark _by contrast_ with the brilliant illumination of the rest of the spectrum. A good deal of solar light really lies in the dark lines, though not enough to be seen when the eye is dazzled by the brilliancy around. When the flame of the spirit-lamp charged with sodium intervenes, it sends out a certain amount of light, which is entirely localised in these two lines. So far it would seem that the influence of the sodium flame ought to be manifested in diminishing the darkness of the lines and rendering them less conspicuous. As a matter of fact, they are far more conspicuous with the sodium flame than without it. This arises from the fact that the sodium flame possesses the remarkable property of cutting off the sunlight which was on its way to those particular lines; so that, though the sodium contributes some light to the lines, yet it intercepts a far greater quantity of the light that would otherwise have illuminated those lines, and hence they became darker with the sodium flame than without it.
We are thus conducted to a remarkable principle, which has led to the interpretation of the dark lines in the spectrum of the sun. We find that when the sodium vapour is heated, it gives out light of a very particular type, which, viewed through the prism, is concentrated in two lines. But the sodium vapour possesses also this property, that light from the sun can pass through it without any perceptible absorption, except of those particular rays which are of the same characters as the two lines in question. In other words, we say that if the heated vapour of a substance gives a spectrum of bright lines, corresponding to lights of various kinds, this same vapour will act as an opaque screen to lights of those special kinds, while remaining transparent to light of every other description.
This principle is of such importance in the theory of spectrum analysis that we add a further example. Let us take the element iron, which in a very striking degree illustrates the law in question. In the solar spectrum some hundreds of the dark lines are known to correspond with the spectrum of iron. This correspondence is exhibited in a vivid manner when, by a suitable contrivance, the light of an electric spark from poles of iron is examined in the spectroscope side by side with the solar spectrum. The iron lines in the sun are identical in position with the lines in the spectrum of glowing iron vapour. But the spectrum of iron, as here described, consists of bright lines; while those with which it is compared in the sun are dark on a bright background. They can be completely understood if we suppose the vapour arising from intensely heated iron to be present in the atmosphere which surrounds the luminous strata on the sun. This vapour would absorb or stop precisely the same rays as it emits when incandescent, and hence we learn the important fact that iron, no less than sodium, must, in one form or another, be a constituent of the sun.
Such is, in brief outline, the celebrated discovery of modern times which has given an interpretation to the dark lines of the solar spectrum. The spectra of a large number of terrestrial substances have been examined in comparison with the solar spectrum, and thus it has been established that many of the elements known on the earth are present in the sun. We may mention calcium, iron, hydrogen, sodium, carbon, nickel, magnesium, cobalt, aluminium, chromium, strontium, manganese, copper, zinc, cadmium, silver, tin, lead, potassium. Some of the elements which are of the greatest importance on the earth would appear to be missing from the sun. Sulphur, phosphorus, mercury, gold, nitrogen may be mentioned among the elements which have hitherto given no indication of their being solar constituents.
It is also possible that the lines of a substance in the sun's atmosphere may be so very bright that the light of the continuous spectrum, on which they are superposed, is not able to "reverse" them--_i.e._ turn them into dark lines. We know, for instance, that the bright lines of sodium vapour may be made so intensely bright that the spectrum of an incandescent lime-cylinder placed behind the sodium vapour does not reverse these lines. If, then, we make the sodium lines fainter, they may be reduced to exactly the intensity prevailing in that part of the spectrum of the lime-light, in which case the lines, of course, could not be distinguished. The question as to what elements are really missing from the sun must therefore, like many other questions concerning our great luminary, at present be considered an open one. We shall shortly see that an element previously unknown has actually been discovered by means of a line representing it in the solar spectrum.
Let us now return to the sun-spots and see what the spectroscope can teach us as to their nature. We attach a powerful spectroscope to the eye-end of a telescope in order to get as much light as possible concentrated on the slit; the latter has therefore to be placed exactly at the focus of the object-glass. The instrument is then pointed to a spot, so that its image falls on the slit, and the presence of the dark central part called the _umbra_ reveals itself by a darkish stripe which traverses the ordinary sun-spectrum from end to end. It is bordered on both sides by the spectrum of the _penumbra_, which is much brighter than that of the umbra, but fainter than that of the adjoining regions of the sun.
From the fact that the spectrum is darkened we learn that there is considerable general absorption of light in the umbra. This absorption is not, however, such as would be caused by the presence of volumes of minute solid or liquid particles like those which constitute smoke or cloud. This is indicated by the fact, first discovered by Young in 1883, that the spectrum is not uniformly darkened as it would be if the absorption were caused by floating particles. In the course of examination of many large and quiescent spots, he perceived that the middle green part of the spectrum was crossed by countless fine, dark lines, generally touching each other, but here and there separated by bright intervals. Each line is thicker in the middle (corresponding to the centre of the spot) and tapers to a fine thread at each end; indeed, most of these lines can be traced across the spectrum of the penumbra and out on to that of the solar surface. The absorption would therefore seem to be caused by gases at a much lower temperature than that of the gases present outside the spot.
In the red and yellow parts of the spot-spectrum, which have been specially studied for many years by Sir Norman Lockyer at the South Kensington Observatory, interesting details are found which confirm this conclusion. Many of the dark lines are not thicker and darker in the spot than they are in the ordinary sun-spectrum, while others are very much thickened in the spot-spectrum, such as the lines of iron, calcium, and sodium. The sodium lines are sometimes both widened and doubly reversed--that is, on the thick dark line a bright line is superposed. The same peculiarity is not seldom seen in the notable calcium lines H and K at the violet end of the spectrum. These facts indicate the presence of great masses of the vapours of sodium and calcium over the nucleus. The observations at South Kensington have also brought to light another interesting peculiarity of the spot-spectra. At the time of minimum frequency of spots the lines of iron and other terrestrial elements are prominent among the most widened lines; at the maxima these almost vanish, and the widening is found only amongst lines of unknown origin.
The spectroscope has given us the means of studying other interesting features on the sun, which are so faint that in the full blaze of sunlight they cannot be readily observed with a mere telescope. We can, however, see them easily enough when the brilliant body of the sun is obscured during the rare occurrence of a total eclipse. The conditions necessary for the occurrence of an eclipse will be more fully considered in the next chapter. For the present it will be sufficient to observe that by the movement of the moon it may so happen that the moon completely hides the sun, and thus for certain parts of the earth produces what we call a total eclipse. The few minutes during which a total eclipse lasts are of much interest to the astronomer. Darkness reigns over the landscape, and in that darkness rare and beautiful sights are witnessed.
We have in Fig. 19 a diagram of a total eclipse, showing some of the remarkable objects known as prominences (_a_, _b_, _c_, _d_, _e_) which project from behind the dark body of the moon. That they do not belong to the moon, but are solar appendages of some sort, is easily demonstrated. They first appear on the eastern limb at the commencement of totality. Those first seen are gradually
Free e-book «The Story of the Heavens - Sir Robert Stawell Ball (ebook reader for laptop .TXT) 📗» - read online now
Similar e-books:
Comments (0)