Malaria and Rome: A History of Malaria in Ancient Italy by Robert Sallares (ereader manga txt) 📗
- Author: Robert Sallares
Book online «Malaria and Rome: A History of Malaria in Ancient Italy by Robert Sallares (ereader manga txt) 📗». Author Robert Sallares
¹⁹ L. Molineaux in Wernsdorfer and McGregor (1988: ii. 976).
²⁰ Del Panta (1989: 48–9 n. 23). He stated that the effects of malaria were largely indirect as far as adult mortality in Grosseto was concerned. C. Fermi estimated that malaria was implicated in over 50% of all deaths in Sardinia as recently as 1900 (Brown (1986) ).
²¹ Similarly Desowitz (1997: 195) cited a report from the United States Public Health Service in 1919 which concluded that in the southern states of the USA malaria was more important than tuberculosis, typhoid fever, dysentery, and pellagra put together.
²² Celsus 3.3.1: sequitur vero curatio febrium, quod et in toto corpore et vulgare maxime morbi genus est.
Ex his una cotidiana, altera tertiana, altera quartana est.
122
Demography of malaria
are so important, indirect methods for estimating its effects on mortality, such as comparisons of overall mortality levels (most simply by crude death rates) or of the age-structures of populations (as between Grosseto and Treppio) are in fact a better guide than direct methods, such as the Italian national statistics for causes of death used by Shaw. Indirect methods are the chosen methods of professional malariologists.²³
In view of the quantitative importance of malaria in some areas, as shown by the data from Grosseto, it is not surprising that the popular explanations for malaria were sometimes transferred to other diseases, for want of anything better, but this only serves to demonstrate the all-pervasive influence of malaria in those areas where it occurred. Undoubtedly this also happened in antiquity, but the best example is the great epidemic of syphilis which swept across Europe in the years immediately following the return of Columbus from the New World. Leoniceno, in a booklet produced as part of the dispute at the court of Ferrara in 1497 concerning the nature of the epidemic, carefully discussed the types of diseases mentioned by classical authors and correctly concluded that the (for some) new disease was quite distinct from the elephantiasis or leprosy described in antiquity. Nevertheless he was unable to resist explaining it in Hippocratic terms and associating it with the massive Tiber flood in December 1495, even though he observed that the whole of Italy experienced very high rainfall in that particular year.²⁴ Similarly Fracastoro, in his poem on syphilis which gave the disease its modern name, advised people to avoid the ‘bad air’ of marshes and south winds:
First of all I would urge you not to be familiar with all types of air: avoid ²³ Dobson (1997: 134) on the use of crude death rates; L. Molineaux in Wernsdorfer and McGregor (1988: ii. 974).
²⁴ Leoniceno (1497) added two extra verses to the tetrastichon, which had been composed by another poet about the Tiber flood in 1495, to emphasize the high rainfall all over Europe in that winter: Tempore Alexandri sexti nonisq; decembris | Intumuit thybris bis senas circiter ulnas. |
Insula quaeque domus facta est. mediisque repente | Circunducta viis aequabat cymba fenestras. | Deucalion eo vix tantum tempore tellus | Diluvium passa est, latuit cum tota subundis. ((In the time of Pope Alexander VI, on the 5th of December, | the Tiber rose about a dozen arm-lengths | Each house became an island, and suddenly in the middle | of the streets a boat brought around reached the height of the windows. | Scarcely so much land was flooded at the time when Deucalion survived a flood that submerged everything.) On Leoniceno and the medical dispute at Ferrara see Arrizabalaga et al. (1997: 59–66, 72–7, also 195–6 on the various epidemics in Rome in the sixteenth century).
Demography of malaria
123
winds which always blow from the south, since they are loaded with dirt and the humidity of foul marshes.²⁵
Since syphilis occurred in many parts of Europe which had no marshes, no ‘bad air’, no sirocco wind, and no river Tiber, the environmental aspects of malaria are obviously of no value at all for explaining syphilis. It is testimony to the enormous influence of malaria that ideas for explaining it were transferred so readily to other, utterly dissimilar, diseases, like syphilis. However, malaria did not only interact with other diseases in the human mind at the level of ideas concerning disease causation. The various pathogens also interacted in reality.
5.2 I
It is interesting to go beyond statistics such as those from Grosseto in the nineteenth century to examine in more detail exactly how malaria interacts with other diseases, especially the gastro-intestinal diseases and the respiratory infections which were assigned the primary role in excess seasonal mortality in Rome in the fourth century by Shaw. Interactions between different species of pathogens can be synergistic, antagonistic, or neutral in terms, first, of their effects on each other and, secondly, of their effects on the human host. It is also possible, for example, that a human genetic mutation which confers a degree of resistance to one pathogen might also make the host more susceptible to another pathogen at the same time. An example of an antagonistic interaction between two pathogens is that between malaria and syphilis (see Ch. 2 above). The sequencing of the entire syphilis genome has shown that the syphilis spirochaete ( Treponema pallidum) cannot tolerate the intense body temperatures generated during malarial fevers because it lacks a factor responsible for transcription of heat-shock proteins in other bacteria and so cannot respond to heat shock.²⁶ The interaction between malaria and syphilis was artificially created in hospitals in Europe and North America as a treatment for syphilis in the central nervous system before the development of drugs against syphilis. However, it is probably not very important in nature, so to speak, in regions with endemic ²⁵ Fracastoro (1530), syphilis. sive morbus Gallicus 2.81–3: In
Comments (0)