Make: Electronics by Charles Platt (classic books to read TXT) 📗
- Author: Charles Platt
Book online «Make: Electronics by Charles Platt (classic books to read TXT) 📗». Author Charles Platt
Figure 5-8. A sample page from http://www.doctronics.co.uk shows their detailed instructional approach. This is a valuable free online resource.
My next favorite hobby site is also British-based: the Electronics Club (http://www.kpsec.freeuk.com). It’s not as comprehensive as Doctronics, but very friendly and easy to understand.
For a more theory-based approach, try http://www.electronics-tutorials.ws. This will go a little farther than the theory sections I’ve included here.
For an idiosyncratic selection of electronics topics, try Don Lancaster’s Guru’s Lair (http://www.tinaja.com). Lancaster wrote The TTL Cookbook more than 30 years ago, which opened up electronics to at least two generations of hobbyists and experimenters. He knows what he’s talking about, and isn’t afraid of getting into some fairly ambitious areas such as writing his own PostScript drivers and creating his own serial-port connections. You’ll find a lot of ideas there.
Books
Yes, you do need books. As you’re already reading this one, I won’t recommend other beginners’ guides. Instead, in keeping with the orientation of this chapter, I’ll suggest some titles that will take you farther in various directions, and can be used for reference. I own all of these myself, and find them valuable:
Practical Electronics for Inventors, by Paul Scherz (McGraw-Hill, Second Edition, 2007)
This is a massive, comprehensive book, well worth the $40 cover price. Despite its title, you won’t need to invent anything to find it useful. It’s my primary reference source, covering a wide range of concepts, from the basic properties of resistors and capacitors all the way to some fairly high-end math. If you buy only one book (in addition to this one, of course!), this would be my recommendation.
Getting Started with Arduino, by Massimo Banzi (Make: Books, 2009)
If you enjoy the simplicity and convenience of the PICAXE programmable microcontroller that I describe later in this chapter, you’ll find that the Arduino can do a lot more. Getting Started is the simplest introduction around, and will help to familiarize you with the Processing language used in Arduino (similar to the C language, not much like the version of BASIC used by the PICAXE).
Making Things Talk, by Tom Igoe (Make: Books, 2007)
This ambitious and comprehensive volume shows how to make the most of the Arduino’s ability to communicate with its environment, even getting it to access sites on the Internet.
TTL Cookbook, by Don Lancaster (Howard W. Sams & Co, 1974)
The 1974 copyright date is not a misprint! You may be able to find some later editions, but whichever one you buy, it will be secondhand and possibly expensive, as this title now has collectible value. Lancaster wrote his guide before the 7400 series of chips was emulated on a pin-for-pin basis by CMOS versions, but it’s still a good reference, because the concepts and part numbers haven’t changed, and his writing is so accurate and concise.
CMOS Sourcebook, by Newton C. Braga (Sams Technical Publishing, 2001)
This book is entirely devoted to the 4000 series of CMOS chips, not the 74HC00 series that I’ve dealt with primarily here. The 4000 series is older and must be handled more carefully, because it’s more vulnerable to static electricity than the generations that came later. Still, the chips remain widely available, and their great advantage is their willingness to tolerate a wide voltage range, typically from 5 to 15 volts. This means you can set up a 12-volt circuit that drives a 555 timer, and use output from the timer to go straight into CMOS chips (for example). The book is well organized in three sections: CMOS basics, functional diagrams (showing pinouts for all the main chips), and simple circuits showing how to make the chips perform basic functions.
The Encyclopedia of Electronic Circuits, by Rudolf F. Graf (Tab Books, 1985)
A totally miscellaneous collection of schematics, with minimal explanations. This is a useful book to have around if you have an idea and want to see how someone else approached the problem. Examples are often more valuable than general explanations, and this book is a massive compendium of examples. Many additional volumes in the series have been published, but start with this one, and you may find it has everything you need.
The Circuit Designer’s Companion, by Tim Williams (Newnes, Second Edition, 2005)
Much useful information about making things work in practical applications, but the style is dry and fairly technical. May be useful if you’re interested in moving your electronics projects into the real world.
The Art of Electronics, by Paul Horowitz and Winfield Hill (Cambridge University Press, Second Edition, 1989)
The fact that this book has been through 20 printings tells you two things: (1) Many people regard it as a fundamental resource; (2) Secondhand copies should be widely available, which is an important consideration, as the list price is over $100. It’s written by two academics, and has a more technical approach than Practical Electronics for Inventors, but I find it useful when I’m looking for backup information.
Getting Started in Electronics, by Forrest M. Mims III (Master Publishing, Fourth Edition, 2007)
Although the original dates back to 1983, this is still a fun book to have. I think I have covered many of its topics here, but you may benefit by reading explanations and advice from a completely different source, and it goes a little farther than I have into some electrical theory, on an easy-to-understand basis, with cute drawings. Be warned that it’s a brief book with eclectic coverage. Don’t expect it to have all the answers.
Figure 5-9. These books from MAKE provide guidance if you want to go beyond basic microcontrollers into the more exotic realms of the Arduino chip.
Figure 5-10. A sun-damaged copy of the Don Lancaster’s classic TTL Cookbook, a 2,000-page catalog from the Mouser Electronics supply company, and two comprehensive reference books that can provide years of additional guidance in all areas of electronics.
Experiment 25: Magnetism
This experiment should be a part of any school
Comments (0)