bookssland.com » Science » The Different Forms of Flowers on Plants of the Same Species - Charles Robert Darwin (ebook reader screen TXT) 📗

Book online «The Different Forms of Flowers on Plants of the Same Species - Charles Robert Darwin (ebook reader screen TXT) 📗». Author Charles Robert Darwin



1 2 3 4 5 6 7 8 9 10 ... 52
Go to page:

INTRODUCTION.
The subject of the present volume, namely the differently formed flowers normally produced by certain kinds of plants, either on the same stock or on distinct stocks, ought to have been treated by a professed botanist, to which distinction I can lay no claim. As far as the sexual relations of flowers are concerned, Linnaeus long ago divided them into hermaphrodite, monoecious, dioecious, and polygamous species. This fundamental distinction, with the aid of several subdivisions in each of the four classes, will serve my purpose; but the classification is artificial, and the groups often pass into one another.
The hermaphrodite class contains two interesting sub-groups, namely, heterostyled and cleistogamic plants; but there are several other less important subdivisions, presently to be given, in which flowers differing in various ways from one another are produced by the same species.
Some plants were described by me several years ago, in a series of papers read before the Linnean Society, the individuals of which exist under two or three forms, differing in the length of their pistils and stamens and in other respects. (Introduction/1. "On the Two Forms or Dimorphic Condition in the Species of Primula, and on their remarkable Sexual Relations" 'Journal of the Proceedings of the Linnean Society' volume 6 1862 page 77. "On the Existence of Two Forms, and on their Reciprocal Sexual Relation, in several Species of the Genus Linum" Ibid volume 7 1863 page 69. "On the Sexual Relations of the Three Forms of Lythrum salicaria" Ibid volume 8 1864 page 169. "On the Character and Hybrid-like Nature of the Offspring from the Illegitimate Unions of Dimorphic and Trimorphic Plants" Ibid volume 10 1868 page 393. "On the Specific Differences between Primula veris, Brit. Fl. (var. officinalis, Linn.), P. vulgaris, Brit. Fl. (var. acaulis, Linn.), and P. elatior, Jacq.; and on the Hybrid Nature of the Common oxlip. With Supplementary Remarks on Naturally Produced Hybrids in the Genus Verbascum" Ibid volume 10 1868 page 437.) They were called by me dimorphic and trimorphic, but have since been better named by Hildebrand, heterostyled. (Introduction/2. The term "heterostyled" does not express all the differences between the forms; but this is a failure common in many cases. As the term has been adopted by writers in various countries, I am unwilling to change it for that of heterogone or heterogonous, though this has been proposed by so high an authority as Professor Asa Gray: see the 'American Naturalist' January 1877 page 42.) As I have many still unpublished observations with respect to these plants, it has seemed to me advisable to republish my former papers in a connected and corrected form, together with the new matter. It will be shown that these heterostyled plants are adapted for reciprocal fertilisation; so that the two or three forms, though all are hermaphrodites, are related to one another almost like the males and females of ordinary unisexual animals. I will also give a full abstract of such observations as have been published since the appearance of my papers; but only those cases will be noticed, with respect to which the evidence seems fairly satisfactory. Some plants have been supposed to be heterostyled merely from their pistils and stamens varying greatly in length, and I have been myself more than once thus deceived. With some species the pistil continues growing for a long time, so that if old and young flowers are compared they might be thought to be heterostyled. Again, a species tending to become dioecious, with the stamens reduced in some individuals and with the pistils in others, often presents a deceptive appearance. Unless it be proved that one form is fully fertile only when it is fertilised with pollen from another form, we have not complete evidence that the species is heterostyled. But when the pistils and stamens differ in length in two or three sets of individuals, and this is accompanied by a difference in the size of the pollen-grains or in the state of the stigma, we may infer with much safety that the species is heterostyled. I have, however, occasionally trusted to a difference between the two forms in the length of the pistil alone, or in the length of the stigma together with its more or less papillose condition; and in one instance differences of this kind have been proved by trials made on the fertility of the two forms, to be sufficient evidence.
The second sub-group above referred to consists of hermaphrodite plants, which bear two kinds of flowers--the one perfect and fully expanded--the other minute, completely closed, with the petals rudimentary, often with some of the anthers aborted, and the remaining ones together with the stigmas much reduced in size; yet these flowers are perfectly fertile. They have been called by Dr. Kuhn cleistogamic, and they will be described in the last chapter of this volume. (Introduction/3. 'Botanische Zeitung' 1867 page 65. Several plants are known occasionally to produce flowers destitute of a corolla; but they belong to a different class of cases from cleistogamic flowers. This deficiency seems to result from the conditions to which the plants have been subjected, and partakes of the nature of a monstrosity. All the flowers on the same plant are commonly affected in the same manner. Such cases, though they have sometimes been ranked as cleistogamic, do not come within our present scope: see Dr. Maxwell Masters 'Vegetable Teratology' 1869 page 403.) They are manifestly adapted for self- fertilisation, which is effected at the cost of a wonderfully small expenditure of pollen; whilst the perfect flowers produced by the same plant are capable of cross-fertilisation. Certain aquatic species, when they flower beneath the water, keep their corollas closed, apparently to protect their pollen; they might therefore be called cleistogamic, but for reasons assigned in the proper place are not included in the present sub-group. Several cleistogamic species, as we shall hereafter see, bury their ovaries or young capsules in the ground; but some few other plants behave in the same manner; and, as they do not bury all their flowers, they might have formed a small separate subdivision.
Another interesting subdivision consists of certain plants, discovered by H. Muller, some individuals of which bear conspicuous flowers adapted for cross- fertilisation by the aid of insects, and others much smaller and less conspicuous flowers, which have often been slightly modified so as to ensure self-fertilisation. Lysimachia vulgaris, Euphrasia officinalis, Rhinanthus crista-galli, and Viola tricolor come under this head. (Introduction/4. H. Muller 'Nature' September 25, 1873 volume 8 page 433 and November 20, 1873 volume 9 page 44. Also 'Die Befruchtung der Blumen' etc. 1873 page 294.) The smaller and less conspicuous flowers are not closed, but as far as the purpose which they serve is concerned, namely, the assured propagation of the species, they approach in nature cleistogamic flowers; but they differ from them by the two kinds being produced on distinct plants.
With many plants, the flowers towards the outside of the inflorescence are much larger and more conspicuous than the central ones. As I shall not have occasion to refer to plants of this kind in the following chapters, I will here give a few details respecting them. It is familiar to every one that the ray-florets of the Compositae often differ remarkably from the others; and so it is with the outer flowers of many Umbelliferae, some Cruciferae and a few other families. Several species of Hydrangea and Viburnum offer striking instances of the same fact. The Rubiaceous genus Mussaenda presents a very curious appearance from some of the flowers having the tip of one of the sepals developed into a large petal-like expansion, coloured either white or purple. The outer flowers in several Acanthaceous genera are large and conspicuous but sterile; the next in order are smaller, open, moderately fertile and capable of cross-fertilisation; whilst the central ones are cleistogamic, being still smaller, closed and highly fertile; so that here the inflorescence consists of three kinds of flowers. (Introduction/5. J. Scott 'Journal of Botany' London new series volume 1 1872 pages 161-164.) From what we know in other cases of the use of the corolla, coloured bracteae, etc., and from what H. Muller has observed on the frequency of the visits of insects to the flower-heads of the Umbelliferae and Compositae being largely determined by their conspicuousness, there can be no doubt that the increased size of the corolla of the outer flowers, the inner ones being in all the above cases small, serves to attract insects. (Introduction/6. 'Die Befruchtung der Blumen' pages 108, 412.) The result is that cross-fertilisation is thus favoured. Most flowers wither soon after being fertilised, but Hildebrand states that the ray-florets of the Compositae last for a long time, until all those on the disc are impregnated; and this clearly shows the use of the former. (Introduction/7. See his interesting memoir 'Ueber die Geschlechtsverhaltniss bei den Compositen' 1869 page 92.) The ray-florets, however, are of service in another and very different manner, namely, by folding inwards at night and during cold rainy weather, so as to protect the florets of the disc. (Introduction/8. Kerner clearly shows that this is the case: 'Die Schutzmittel des Pollens' 1873 page 28.) Moreover they often contain matter which is excessively poisonous to insects, as may be seen in the use of flea- powder, and in the case of Pyrethrum, M. Belhomme has shown that the ray-florets are more poisonous than the disc-florets in the ratio of about three to two. We may therefore believe that the ray-florets are useful in protecting the flowers from being gnawed by insects. (Introduction/9. 'Gardener's Chronicle' 1861 page 1067. Lindley 'Vegetable Kingdom' on Chrysanthemum 1853 page 706. Kerner in his interesting essay 'Die Schutzmittel der Bluthen gegen unberufene Gaste' 1875 page 19, insists that the petals of most plants contain matter which is offensive to insects, so that they are seldom gnawed, and thus the organs of fructification are protected. My grandfather in 1790 'Loves of the Plants' canto 3 note to lines 184, 188, remarks that "The flowers or petals of plants are perhaps in general more acrid than their leaves; hence they are much seldomer eaten by insects.")
It is a well-known yet remarkable fact that the circumferential flowers of many of the foregoing plants have both their male and female reproductive organs aborted, as with the Hydrangea, Viburnum and certain Compositae; or the male organs alone are aborted, as in many Compositae. Between the sexless, female and hermaphrodite states of these latter flowers, the finest gradations may be traced, as Hildebrand has shown. (Introduction/10. 'Ueber die Geschlechtsverhaltnisse bei den Compositen' 1869 pages 78-91.) He also shows that there is a close relation between the size of the corolla in the ray- florets and the degree of abortion in their reproductive organs. As we have good reason to believe that these florets are highly serviceable to the plants which possess them, more especially by rendering the flower-heads conspicuous to insects, it is a natural inference that their corollas have been increased in size for this special purpose; and that their development has subsequently led, through the principle of compensation or balancement, to the more or less complete reduction of the reproductive organs. But an opposite view may be maintained, namely, that the reproductive organs first began to fail, as often happens under cultivation, and, as a consequence, the corolla became, through compensation, more highly developed. (Introduction/11. I have discussed this subject in my 'Variation of Animals and Plants under Domestication' chapter 18 2nd edition volume 2 pages 152, 156.) This view, however, is not probable, for when hermaphrodite plants become dioecious or gyno-dioecious--that is, are converted into hermaphrodites and females--the corolla of the female seems to be almost invariably reduced in size in consequence of

1 2 3 4 5 6 7 8 9 10 ... 52
Go to page:

Free e-book «The Different Forms of Flowers on Plants of the Same Species - Charles Robert Darwin (ebook reader screen TXT) 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment