The Story of the Heavens - Sir Robert Stawell Ball (ebook reader for laptop .TXT) 📗
- Author: Sir Robert Stawell Ball
Book online «The Story of the Heavens - Sir Robert Stawell Ball (ebook reader for laptop .TXT) 📗». Author Sir Robert Stawell Ball
The patient observations of the early astronomers enabled the sun's track through the heavens to be ascertained, and it was found that in its circuit amid the stars and constellations our luminary invariably followed the same path. This is called the _ecliptic_, and the constellations through which it passes form a belt around the heavens known as the _zodiac_. It was anciently divided into twelve equal portions or "signs," so that the stages on the sun's great journey could be conveniently indicated. The duration of the year, or the period required by the sun to run its course around the heavens, seems to have been first ascertained by astronomers whose names are unknown. The skill of the early Oriental geometers was further evidenced by their determination of the position of the ecliptic with regard to the celestial equator, and by their success in the measurement of the angle between these two important circles on the heavens.
The principal features of the motion of the moon have also been noticed with intelligence at an antiquity more remote than history. The attentive observer perceives the important truth that the moon does not occupy a fixed position in the heavens. During the course of a single night the fact that the moon has moved from west to east across the heavens can be perceived by noting its position relatively to adjacent stars. It is indeed probable that the motion of the moon was a discovery prior to that of the annual motion of the sun, inasmuch as it is the immediate consequence of a simple observation, and involves but little exercise of any intellectual power. In prehistoric times also, the time of revolution of the moon had been ascertained, and the phases of our satellite had been correctly attributed to the varying aspect under which the sun-illuminated side is turned towards the earth.
But we are far from having exhausted the list of great discoveries which have come down from unknown antiquity. Correct explanations had been given of the striking phenomenon of a lunar eclipse, in which the brilliant surface is plunged temporarily into darkness, and also of the still more imposing spectacle of a solar eclipse, in which the sun itself undergoes a partial or even a total obscuration. Then, too, the acuteness of the early astronomers had detected the five wandering stars or planets: they had traced the movements of Mercury and Venus, Mars, Jupiter, and Saturn. They had observed with awe the various configurations of these planets: and just as the sun, and in a lesser degree the moon, were intimately associated with the affairs of daily life, so in the imagination of these early investigators the movements of the planets were thought to be pregnant with human weal or human woe. At length a certain order was perceived to govern the apparently capricious movements of the planets. It was found that they obeyed certain laws. The cultivation of the science of geometry went hand in hand with the study of astronomy: and as we emerge from the dim prehistoric ages into the historical period, we find that the theory of the phenomena of the heavens possessed already some degree of coherence.
Ptolemy, following Pythagoras, Plato, and Aristotle, acknowledged that the earth's figure was globular, and he demonstrated it by the same arguments that we employ at the present day. He also discerned how this mighty globe was isolated in space. He admitted that the diurnal movement of the heavens could be accounted for by the revolution of the earth upon its axis, but unfortunately he assigned reasons for the deliberate rejection of this view. The earth, according to him, was a fixed body; it possessed neither rotation round an axis nor translation through space, but remained constantly at rest in what he supposed to be the centre of the universe. According to Ptolemy's theory the sun and the moon moved in circular orbits around the earth in the centre. The explanation of the movements of the planets he found to be more complicated, because it was necessary to account for the fact that a planet sometimes advanced and that it sometimes retrograded. The ancient geometers refused to believe that any movement, except revolution in a circle, was possible for a celestial body: accordingly a contrivance was devised by which each planet was supposed to revolve in a circle, of which the centre described another circle around the earth.
Although the Ptolemaic doctrine is now known to be framed on quite an extravagant estimate of the importance of the earth in the scheme of the heavens, yet it must be admitted that the apparent movements of the celestial bodies can be thus accounted for with considerable accuracy. This theory is described in the great work known as the "Almagest," which was written in the second century of our era, and was regarded for fourteen centuries as the final authority on all questions of astronomy.
Such was the system of Astronomy which prevailed during the Middle Ages, and was only discredited at an epoch nearly simultaneous with that of the discovery of the New World by Columbus. The true arrangement of the solar system was then expounded by Copernicus in the great work to which he devoted his life. The first principle established by these labours showed the diurnal movement of the heavens to be due to the rotation of the earth on its axis. Copernicus pointed out the fundamental difference between real motions and apparent motions; he proved that the appearances presented in the daily rising and setting of the sun and the stars could be accounted for by the supposition that the earth rotated, just as satisfactorily as by the more cumbrous supposition of Ptolemy. He showed, moreover, that the latter supposition must attribute an almost infinite velocity to the stars, so that the rotation of the entire universe around the earth was clearly a preposterous supposition. The second great principle, which has conferred immortal glory on Copernicus, assigned to the earth its true position in the universe. Copernicus transferred the centre, about which all the planets revolve, from the earth to the sun; and he established the somewhat humiliating truth, that our earth is merely a planet pursuing a track between the paths of Venus and of Mars, and subordinated like all the other planets to the supreme sway of the Sun.
This great revolution swept from astronomy those distorted views of the earth's importance which arose, perhaps not unnaturally, from the fact that we happen to be domiciled on that particular planet. The achievements of Copernicus were soon to be followed by the invention of the telescope, that wonderful instrument by which the modern science of astronomy has been created. To the consideration of this important subject we shall devote the first chapter of our book.
CHAPTER I.
THE ASTRONOMICAL OBSERVATORY.
Early Astronomical Observations--The Observatory of Tycho
Brahe--The Pupil of the Eye--Vision of Faint Objects--The
Telescope--The Object-Glass--Advantages of Large Telescopes--The
Equatorial--The Observatory--The Power of a Telescope--Reflecting
Telescopes--Lord Rosse's Great Reflector at Parsonstown--How the
mighty Telescope is used--Instruments of Precision--The Meridian
Circle--The Spider Lines--Delicacy of pointing a
Telescope--Precautions necessary in making Observations--The Ideal
Instrument and the Practical One--The Elimination of
Error--Greenwich Observatory--The ordinary Opera-Glass as an
Astronomical Instrument--The Great Bear--Counting the Stars in the
Constellation--How to become an Observer.
The earliest rudiments of the Astronomical Observatory are as little known as the earliest discoveries in astronomy itself. Probably the first application of instrumental observation to the heavenly bodies consisted in the simple operation of measuring the shadow of a post cast by the sun at noonday. The variations in the length of this shadow enabled the primitive astronomers to investigate the apparent movements of the sun. But even in very early times special astronomical instruments were employed which possessed sufficient accuracy to add to the amount of astronomical knowledge, and displayed considerable ingenuity on the part of the designers.
Professor Newcomb[2] thus writes: "The leader was Tycho Brahe, who was born in 1546, three years after the death of Copernicus. His attention was first directed to the study of astronomy by an eclipse of the sun on August 21st, 1560, which was total in some parts of Europe. Astonished that such a phenomenon could be predicted, he devoted himself to a study of the methods of observation and calculation by which the prediction was made. In 1576 the King of Denmark founded the celebrated observatory of Uraniborg, at which Tycho spent twenty years assiduously engaged in observations of the positions of the heavenly bodies with the best instruments that could then be made. This was just before the invention of the telescope, so that the astronomer could not avail himself of that powerful instrument. Consequently, his observations were superseded by the improved ones of the centuries following, and their celebrity and importance are principally due to their having afforded Kepler the means of discovering his celebrated laws of planetary motion."
The direction of the telescope to the skies by Galileo gave a wonderful impulse to the study of the heavenly bodies. This extraordinary man is prominent in the history of astronomy, not alone for his connection with this supreme invention, but also for his achievements in the more abstract parts of astronomy. He was born at Pisa in 1564, and in 1609 the first telescope used for astronomical observation was constructed. Galileo died in 1642, the year in which Newton was born. It was Galileo who laid with solidity the foundations of that science of Dynamics, of which astronomy is the most splendid illustration; and it was he who, by promulgating the doctrines taught by Copernicus, incurred the wrath of the Inquisition.
The structure of the human eye in so far as the exquisite adaptation of the pupil is concerned presents us with an apt illustration of the principle of the telescope. To see an object, it is necessary that the light from it should enter the eye. The portal through which the light is admitted is the pupil. In daytime, when the light is brilliant, the iris decreases the size of the pupil, and thus prevents too much light from entering. At night, or whenever the light is scarce, the eye often requires to grasp all it can. The pupil then expands; more and more light is admitted according as the pupil grows larger. The illumination of the image on the retina is thus effectively controlled in accordance with the requirements of vision.
A star transmits to us its feeble rays of light, and from those rays the image is formed. Even with the most widely-opened pupil, it may, however, happen that the image is not bright enough to excite the sensation of vision. Here the telescope comes to our aid: it catches all the rays in a beam whose original dimensions were far too great to allow of its admission through the pupil. The action of the lenses concentrates those rays into a stream slender enough to pass through the small opening. We thus have the brightness of the image on the retina intensified. It is illuminated with nearly as much light as would be collected from the same object through a pupil as large as the great lenses of the telescope.
In astronomical observatories we employ telescopes of two entirely different classes. The more familiar forms are those known as _refractors_, in which the operation of condensing the rays of light is conducted by refraction. The character of the refractor is shown in Fig. 1. The rays from the star fall upon the object-glass
Comments (0)