bookssland.com » Science » The Different Forms of Flowers on Plants of the Same Species - Charles Robert Darwin (ebook reader screen TXT) 📗

Book online «The Different Forms of Flowers on Plants of the Same Species - Charles Robert Darwin (ebook reader screen TXT) 📗». Author Charles Robert Darwin



1 ... 24 25 26 27 28 29 30 31 32 ... 52
Go to page:
the anthers of the shorter stamens in the long-styled form. The anthers of the longer stamens of the short-styled form are to those of the shorter stamens of the long-styled form as 100 to 88 in length. The pollen-grains distended with water from the longer stamens of the short-styled form are to those from the shorter stamens of the same form as 100 to 87 in diameter, as deduced from ten measurements of each kind. We thus see that the organs in these two forms differ from one another and are arranged in an analogous manner, as in the long and short-styled forms of the trimorphic species of Lythrum and Oxalis. Moreover, the longer stamens of the long-styled form of Pontederia, and the shorter ones of the short-styled form are placed in a proper position for fertilising the stigma of a mid-styled form. But Fritz Muller, although he examined a vast number of plants, could never find one belonging to the mid-styled form. The older flowers of the long-styled and short-styled plants had set plenty of apparently good fruit; and this might have been expected, as they could legitimately fertilise one another. Although he could not find the mid-styled form of this species, he possessed plants of another species growing in his garden, and all these were mid-styled; and in this case the pollen-grains from the anthers of the longer stamens were to those from the shorter stamens of the same flower as 100 to 86 in diameter, as deduced from ten measurements of each kind. These mid-styled plants growing by themselves never produced a single fruit.
Considering these several facts, there can hardly be a doubt that both these species of Pontederia are heterostyled and trimorphic. This case is an interesting one, for no other Monocotyledonous plant is known to be heterostyled. Moreover, the flowers are irregular, and all other heterostyled plants have almost symmetrical flowers. The two forms differ somewhat in the colour of their corollas, that of the short-styled being of a darker blue, whilst that of the long-styled tends towards violet, and no other such case is known. Lastly, the three longer stamens alternate with the three shorter ones, whereas in Lythrum and Oxalis the long and short stamens belong to distinct whorls. With respect to the absence of the mid-styled form in the case of the Pontederia which grows wild in Southern Brazil, this would probably follow if only two forms had been originally introduced there; for, as we shall hereafter see from the observations of Hildebrand, Fritz Muller and myself, when one form of Oxalis is fertilised exclusively by either of the other two forms, the offspring generally belong to the two parent-forms.
Fritz Muller has recently discovered, as he informs me, a third species of Pontederia, with all three forms growing together in pools in the interior of S. Brazil; so that no shadow of doubt can any longer remain about this genus including trimorphic species. He sent me dried flowers of all three forms. In the long-styled form the stigma stands a little above the tips of the petals, and on a level with the anthers of the longest stamens in the other two forms. The pistil is in length to that of the mid-styled as 100 to 56, and to that of the short-styled as 100 to 16. Its summit is rectangularly bent upwards, and the stigma is rather broader than that of the mid-styled, and broader in about the ratio of 7 to 4 than that of the short-styled. In the mid-styled form, the stigma is placed rather above the middle of the corolla, and nearly on a level with the mid-length stamens in the other two forms; its summit is a little bent upwards. In the short-styled form the pistil is, as we have seen, very short, and differs from that in the other two forms in being straight. It stands rather beneath the level of the anthers of the shortest stamens in the long-styled and mid-styled forms. The three anthers of each set of stamens, more especially those of the shortest stamens, are placed one beneath the other, and the ends of the filaments are bowed a little upwards, so that the pollen from all the anthers would be effectively brushed off by the proboscis of a visiting insect. The relative diameters of the pollen-grains, after having been long soaked in water, are given in Table 4.d, as measured by my son Francis.
TABLE 4.d. Pontederia. Diameters of pollen-grains, after having been long soaked in water, in divisions of the micrometer.
Column 1: Source of Pollen-grains. Column 2: diameter.
Long-styled form, mid-length stamens (Average of 20 measurements): 13.2. Long-styled form, shortest stamens (10 measurements): 9.0.
Mid-styled form, longest stamens (15 measurements) : 16.4. Mid-styled form, shortest stamens (20 measurements): 9.1.
Short-styled form, longest stamens (20 measurements): 14.6. Short-styled form, mid-length stamens (20 measurements): 12.3.
We have here the usual rule of the grains from the longer stamens, the tubes of which have to penetrate the longer pistil, being larger than those from the stamens of less length. The extreme difference in diameter between the grains from the longest stamens of the mid-styled form, and from the shortest stamens of the long-styled, is as 16.4 to 9.0, or as 100 to 55; and this is the greatest difference observed by me in any heterostyled plant. It is a singular fact that the grains from the corresponding longest stamens in the two forms differ considerably in diameter; as do those in a lesser degree from the corresponding mid-length stamens in the two forms; whilst those from the corresponding shortest stamens in the long- and mid-styled forms are almost exactly equal. Their inequality in the two first cases depends on the grains in both sets of anthers in the short-styled form being smaller than those from the corresponding anthers in the other two forms; and here we have a case parallel with that of the mid-styled form of Lythrum salicaria. In this latter plant the pollen-grains of the mid-styled forms are of smaller size and have less fertilising power than the corresponding ones in the other two forms; whilst the ovarium, however fertilised, yields a greater number of seeds; so that the mid-styled form is altogether more feminine in nature than the other two forms. In the case of Pontederia, the ovarium includes only a single ovule, and what the meaning of the difference in size between the pollen-grains from the corresponding sets of anthers may be, I will not pretend to conjecture.
The clear evidence that the species just described is heterostyled and trimorphic is the more valuable as there is some doubt with respect to P. cordata, an inhabitant of the United States. Mr. Leggett suspects that it is either dimorphic or trimorphic, for the pollen-grains of the longer stamens are "more than twice the diameter or than eight times the mass of the grains of the shorter stamens. Though minute, these smaller grains seem as perfect as the larger ones." (4/16. 'Bulletin of the Torrey Botanical Club' 1875 volume 6 page 62.) On the other hand, he says that in all the mature flowers, "the style was as long at least as the longer stamens;" "whilst in the young flowers it was intermediate in length between the two sets of stamens;" and if this be so, the species can hardly be heterostyled.


CHAPTER V.
ILLEGITIMATE OFFSPRING OF HETEROSTYLED PLANTS.
Illegitimate offspring from all three forms of Lythrum salicaria. Their dwarfed stature and sterility, some utterly barren, some fertile. Oxalis, transmission of form to the legitimate and illegitimate seedlings. Primula Sinensis, Illegitimate offspring in some degree dwarfed and infertile. Equal-styled varieties of P. Sinensis, auricula, farinosa, and elatior. P. vulgaris, red-flowered variety, Illegitimate seedlings sterile. P. veris, Illegitimate plants raised during several successive generations, their dwarfed stature and sterility. Equal-styled varieties of P. veris. Transmission of form by Pulmonaria and Polygonum. Concluding remarks. Close parallelism between illegitimate fertilisation and hybridism.
We have hitherto treated of the fertility of the flowers of heterostyled plants, when legitimately and illegitimately fertilised. The present chapter will be devoted to the character of their offspring or seedlings. Those raised from legitimately fertilised seeds will be here called LEGITIMATE SEEDLINGS or PLANTS, and those from illegitimately fertilised seeds, ILLEGITIMATE SEEDLINGS or PLANTS. They differ chiefly in their degree of fertility, and in their powers of growth or vigour. I will begin with trimorphic plants, and I must remind the reader that each of the three forms can be fertilised in six different ways; so that all three together can be fertilised in eighteen different ways. For instance, a long-styled form can be fertilised legitimately by the longest stamens of the mid-styled and short-styled forms, and illegitimately by its own- form and mid-length and shortest stamens, also by the mid-length stamens of the mid-styled and by the shortest stamens of the short-styled form; so that the long-styled can be fertilised legitimately in two ways and illegitimately in four ways. The same holds good with respect to the mid-styled and short-styled forms. Therefore with trimorphic species six of the eighteen unions yield legitimate offspring, and twelve yield illegitimate offspring.
I will give the results of my experiments in detail, partly because the observations are extremely troublesome, and will not probably soon be repeated-- thus, I was compelled to count under the microscope above 20,000 seeds of Lythrum salicaria--but chiefly because light is thus indirectly thrown on the important subject of hybridism.
Lythrum salicaria.
Of the twelve illegitimate unions two were completely barren, so that no seeds were obtained, and of course no seedlings could be raised. Seedlings were, however, raised from seven of the ten remaining illegitimate unions. Such illegitimate seedlings when in flower were generally allowed to be freely and legitimately fertilised, through the agency of bees, by other illegitimate plants belonging to the two other forms growing close by. This is the fairest plan, and was usually followed; but in several cases (which will always be stated) illegitimate plants were fertilised with pollen taken from legitimate plants belonging to the other two forms; and this, as might have been expected, increased their fertility. Lythrum salicaria is much affected in its fertility by the nature of the season; and to avoid error from this source, as far as possible, my observations were continued during several years. Some few experiments were tried in 1863. The summer of 1864 was too hot and dry, and, though the plants were copiously watered, some few apparently suffered in their fertility, whilst others were not in the least affected. The years 1865 and, especially, 1866, were highly favourable. Only a few observations were made during 1867. The results are arranged in classes according to the parentage of the plants. In each case the average number of seeds per capsule is given, generally taken from ten capsules, which, according to my experience, is a nearly sufficient number. The maximum number of seeds in any one capsule is also given; and this is a useful point of comparison with the normal standard--that is, with the number of seeds produced by legitimate plants legitimately fertilised. I will give likewise in each case the minimum number. When the maximum and minimum differ greatly, if no remark is made on the subject, it may be understood that the extremes are so closely connected by intermediate figures that the average is a fair one. Large capsules were always selected for counting, in order to avoid over-estimating the infertility of the several illegitimate plants.
In order to judge of the degree of inferiority in fertility of the several illegitimate plants, the following statement of the average and of the maximum number of seeds produced by ordinary or legitimate plants, when legitimately fertilised, some artificially and some naturally, will serve as a standard of comparison, and may in each case be referred to. But I give under each experiment the percentage of seeds produced by the illegitimate
1 ... 24 25 26 27 28 29 30 31 32 ... 52
Go to page:

Free e-book «The Different Forms of Flowers on Plants of the Same Species - Charles Robert Darwin (ebook reader screen TXT) 📗» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment