The Elements of Geology - William Harmon Norton (best beach reads TXT) 📗
- Author: William Harmon Norton
- Performer: -
Book online «The Elements of Geology - William Harmon Norton (best beach reads TXT) 📗». Author William Harmon Norton
The three regions just mentioned include the chief Carboniferous coal fields of North America. Including a field in central Michigan evidently formed in an inclosed basin (Fig. 260), and one in Rhode Island, the total area of American coal fields has been reckoned at not less than two hundred thousand square miles. We can hardly estimate the value of these great stores of fossil fuel to an industrial civilization. The forests of the coal swamps accumulated in their woody tissues the energy which they received from the sun in light and heat, and it is this solar energy long stored in coal seams which now forms the world's chief source of power in manufacturing.
THE WESTERN AREA. On the Great Plains beyond the Missouri River the Carboniferous strata pass under those of more recent systems. Where they reappear, as about dissected mountain axes or on stripped plateaus, they consist wholly of marine deposits and are devoid of coal. The rich coal fields of the West are of later date.
On the whole the Carboniferous seems to have been a time of subsidence in the West. Throughout the period a sea covered the Great Basin and the plateaus of the Colorado River. At the time of the greatest depression the sites of the central chains of the Rockies were probably islands, but early in the period they may have been connected with the broad lands to the south and east. Thousands of feet of Carboniferous sediments were deposited where the Sierra Nevada Mountains now stand.
THE PERMIAN. As the Carboniferous period drew toward its close the sea gradually withdrew from the eastern part of the continent. Where the sea lingered in the deepest troughs, and where inclosed basins were cut off from it, the strata of the Permian were deposited. Such are found in New Brunswick, in Pennsylvania and West Virginia, in Texas, and in Kansas. In southwestern Kansas extensive Permian beds of rock salt and gypsum show that here lay great salt lakes in which these minerals were precipitated as their brines grew dense and dried away.
In the southern hemisphere the Permian deposits are so extraordinary that they deserve a brief notice, although we have so far omitted mention of the great events which characterized the evolution of other continents than our own. The Permian fauna- flora of Australia, India, South Africa, and the southern part of South America are so similar that the inference is a reasonable one that these widely separated regions were then connected together, probably as extensions of a great antarctic continent.
Interbedded with the Permian strata of the first three countries named are extensive and thick deposits of a peculiar nature which are clearly ancient ground moraines. Clays and sand, now hardened to firm rock, are inset with unsorted stones of all sizes, which often are faceted and scratched. Moreover, these bowlder clays rest on rock pavements which are polished and scored with glacial markings. Hence toward the close of the Paleozoic the southern lands of the eastern hemisphere were invaded by great glaciers or perhaps by ice sheets like that which now shrouds Greenland.
These Permian ground moraines are not the first traces of the work of glaciers met with in the geological record. Similar deposits prove glaciation in Norway succeeding the pre-Cambrian stage of elevation, and Cambrian glacial drift has recently been found in China.
THE APPALACHIAN DEFORMATION. We have seen that during Paleozoic times a long, narrow trough of the sea lay off the western coast of the ancient land of Appalachia, where now are the Appalachian Mountains. During the long ages of this era the trough gradually subsided, although with many stillstands and with occasional slight oscillations upward. Meanwhile the land lying to the east was gradually uplifted at varying rates and with long pauses. The waste of the rising land was constantly transferred to the sinking marginal sea bottom, and on the whole the trough was filled with sediments as rapidly as it subsided. The sea was thus kept shallow, and at times, especially toward the close of the era, much of the area was upbuilt or raised to low, marshy, coastal plains. When the Carboniferous was ended the waste which had been removed from the land and laid along its margin in the successive formations of the Paleozoic had reached a thickness of between thirty and forty thousand feet.
Both by sedimentation and by subsidence the trough had now become a belt of weakness in the crust of the earth. Here the crust was now made of layers to the depth of six or seven miles. In comparison with the massive crystalline rocks of Appalachia on the east, the layered rock of the trough was weak to resist lateral pressure, as a ream of sheets of paper is weak when compared with a solid board of the same thickness. It was weaker also than the region to the west, since there the sediments were much thinner. Besides, by the long-continued depression the strata of the trough had been bent from the flat-lying attitude in which they were laid to one in which they were less able to resist a horizontal thrust.
There now occurred one of the critical stages in the history of the planet, when the crust crumples under its own weight and shrinks down upon a nucleus which is diminishing in volume and no longer able to support it. Under slow but resistless pressure the strata of the Appalachian trough were thrust against the rigid land, and slowly, steadily bent into long folds whose axes ran northeast-southwest parallel to the ancient coast line. It was on the eastern side next the buttress of the land that the deformation was the greatest, and the folds most steep and close. In central Pennsylvania and West Virginia the folds were for the most part open. South of these states the folds were more closely appressed, the strata were much broken, and the great thrust faults were formed which have been described already. In eastern Pennsylvania seams of bituminous coal were altered to anthracite, while outside the region of strong deformation, as in western Pennyslvania, they remained unchanged. An important factor in the deformation was the massive limestones of the Cambrian-Ordovician. Because of these thick, resistant beds the rocks were bent into wide folds and sheared in places with great thrust faults. Had the strata been weak shales, an equal pressure would have crushed and mashed them.
Although the great earth folds were slowly raised, and no doubt eroded in their rising, they formed in all probability a range of lofty mountains, with a width of from fifty to a hundred and twenty-five miles, which stretched from New York to central Alabama.
From their bases lowlands extended westward to beyond the Missouri
River. At the same time ranges were upridged out of thick
Paleozoic sediments both in the Bay of Fundy region and in the
Indian Territory. The eastern portion of the North American
continent was now well-nigh complete.
The date of the Appalachian deformation is told in the usual way. The Carboniferous strata, nearly two miles thick, are all infolded in the Appalachian ridges, while the next deposits found in this region—those of the later portion of the first period (the Trias) of the succeeding era—rest unconformably on the worn edges of the Appalachian folded strata. The deformation therefore took place about the close of the Paleozoic. It seems to have begun in the Permian, in, eastern Pennsylvania,—for here the Permian strata are wanting,—and to have continued into the Trias, whose earlier formations are absent over all the area.
With this wide uplift the subsidence of the sea floor which had so long been general in eastern North America came to an end. Deposition now gave place to erosion. The sedimentary record of the Paleozoic was closed, and after an unknown lapse of time, here unrecorded, the annals of the succeeding era were written under changed conditions.
In western North America the closing stages of the Paleozoic were marked by important oscillations. The Great Basin, which had long been a mediterranean sea, was converted into land over western Utah and eastern Nevada, while the waves of the Pacific rolled across California and western Nevada.
The absence of tuffs and lavas among the Carboniferous strata of North America shows that here volcanic action was singularly wanting during the entire period. Even the Appalachian deformation was not accompanied by any volcanic outbursts.
LIFE OF THE CARBONIFEROUSPLANTS. The gloomy forests and dense undergrowths of the Carboniferous jungles would appear unfamiliar to us could we see them as they grew, and even a botanist would find many of their forms perplexing and hard to classify. None of our modern trees would meet the eye. Plants with conspicuous flowers of fragrance and beauty were yet to come. Even mosses and grasses were still absent.
Tree ferns lifted their crowns of feathery fronds high in air on trunks of woody tissue; and lowly herbaceous ferns, some belonging to existing families, carpeted the ground. Many of the fernlike forms, however, have distinct affinities with the cycads, of which they may be the ancestors, and some bear seeds and must be classed as gymnosperms.
Dense thickets, like cane or bamboo brakes, were composed of thick clumps of CALAMITES, whose slender, jointed stems shot up to a height of forty feet, and at the joints bore slender branches set with whorls of leaves. These were close allies of the Equiseta or "horsetails," of the present; but they bore characteristics of higher classes in the woody structures of their stems.
There were also vast monotonous forests, composed chiefly of trees belonging to the lycopods, and whose nearest relatives to-day are the little club mosses of our eastern woods. Two families of lycopods deserve special mention,—the Lepidodendrons and the Sigillaria.
The LEPIDODENDRON, or "scale tree," was a gigantic club moss fifty and seventy-five feet high, spreading toward the top into stout branches, at whose ends were borne cone-shaped spore cases. The younger parts of the tree were clothed with stiff needle-shaped leaves, but elsewhere the trunk and branches were marked with scalelike scars, left by the fallen leaves, and arranged in spiral rows.
The SIGILLARIA, or "seal tree," was similar to the Lepidodendron, but its fluted trunk divided into even fewer branches, and was dotted with vertical rows of leaf scars, like the impressions of a seal.
Both Lepidodendron and Sigillaria were anchored by means of great cablelike underground stems, which ran to long distances through the marshy ground. The trunks of both trees had a thick woody rind, inclosing loose cellular tissue and a pith. Their hollow stumps, filled with sand and mud, are common in the Coal Measures, and in them one sometimes finds leaves and stems, land shells, and the bones of little reptiles of the time which made their home there.
It is important to note that some of these gigantic lycopods, which are classed with the CRYPTOGAMS, or flowerless plants, had pith and medullary rays dividing their cylinders into woody wedges. These characters connect them with the PHANEROGAMS, or flowering plants. Like so many of the organisms of the remote past, they were connecting types from which groups now widely separated have diverged.
Gymnosperms, akin to the cycads, were also present in the Carboniferous forests. Such were the different species of CORDAITES, trees pyramidal in shape, with strap-shaped leaves and nutlike fruit. Other gymnosperms were related to the yews, and it was by these that many of the fossil nuts found in the Coal Measures were borne. It is thought by some that the gymnosperms had their station on the drier plains and higher lands.
The Carboniferous jungles extended over parts of Europe and of Asia, as well as eastern North America, and reached from the equator to within nine degrees of the north pole. Even in these widely separated regions the genera and species of coal plants are close akin and often identical.
INVERTEBRATES. Among the echinoderms, crinoids are now exceedingly abundant, sea urchins are more plentiful, and sea cucumbers are found now for the first time. Trilobites are rapidly declining, and pass away forever with the close of the period. Eurypterids are common; stinging scorpions are abundant; and here occur the first-known spiders.
We have seen that the arthropods were the first of all animals to conquer the realm of the air, the earliest insects appearing in the Ordovician. Insects had now become exceedingly abundant, and the Carboniferous forests swarmed with the ancestral types of dragon flies,—some with a spread of wing of more than two feet,— May flies, crickets, and locusts. Cockroaches infested the swamps, and one hundred and thirty-three species of this ancient order have been discovered in the Carboniferous of North America. The higher flower-loving insects are still absent; the reign of the flowering plants has not yet begun. The Paleozoic insects were generalized types connecting the present
Comments (0)