Things To Make - Archibald Williams (the reader ebook .TXT) 📗
- Author: Archibald Williams
- Performer: -
Book online «Things To Make - Archibald Williams (the reader ebook .TXT) 📗». Author Archibald Williams
[Illustration: FIG. 45.—Points for electric railway.]
Details.—The tongues must be bevelled off to a point on the sides respectively nearest to the continuous rails. The parts AA are bent out at the ends to make guides, which, in combination with the safety rails, will prevent the wheels jumping the track. Care should be taken to insulate centre rail connecting wires where they pass through or under the wheel rails.
It is advisable to lay out a set of points, together with motor and signals, on a separate board.
[Illustration: Fig. 46.—Double-armed signal, operated by points.]
Preservation of Track.—All the wooden parts of an outdoor track should be well creosoted before use.
The Electric Locomotive.
An elevation and a plan of this are given in Fig. 47. The two pairs of wheels are set close together, so that they may pass easily round curves.
[Illustration: Fig. 47.—Plan and elevation of electric locomotive.]
The Motor.—A motor of ordinary type, with electro field magnets, is unsuitable for traction, as it cannot be reversed by changing the direction of the current, unless a special and rather expensive type of automatic switch be used. While a motor of this kind is, in conjunction with such a switch, the most efficient, the motor with permanent field magnets is preferable as regards cost and ease of fixing. It can be reversed through the rails. The armature or revolving part must be tripolar to be self-starting in all positions.
A motor of sufficient power can be bought for half a crown or less—in any case more cheaply than it can be made by the average amateur.
The motor used for the locomotive illustrated was taken to pieces, and the magnet M screwed to a strip of wood 1-5/8 inches wide; and for the original armature bearings were substituted a couple of pieces of brass strip, HH, screwed to two wooden supports, SS, on the base, E (Fig. 47, a). It was found necessary to push the armature along the spindle close to the commutator piece, C, and to shorten the spindle at the armature end and turn it down to the size of the original bearing, in order to bring the motor within the space between the wheels.
The place of the small pulley was taken by an 8-toothed pinion wheel, engaging with a pinion soldered to the near driving wheel, the diameter of which it exceeded by about 3/16 inch. The pair, originally parts of an old clock purchased for a few pence, gave a gearing-down of about 9 times.
The position of the driven wheels relatively to the armature must be found experimentally. There is plenty of scope for adjustment, as the wheels can be shifted in either direction longitudinally, while the distance between wheel and armature centres may be further modified in the length of the bearings, BE. These last are pieces of brass strip turned up at the ends, and bored for axles, and screwed to the under side of the base. To prevent the axles sliding sideways and the wheels rubbing the frame, solder small collars to them in contact with the inner side of the bearings.
The Frame.—Having got the motor wheels adjusted, shorten E so that it projects 2 inches beyond the centres of the axles at each end. Two cross bars, GG, 3-1/2 inches long, are then glued to the under side of E, projecting 1/8 inch. To these are glued two 3/8-inch strips, FF, of the same length as E. A buffer beam, K, is screwed to G. A removable cover, abedfg, is made out of cigar-box wood or tin. The ends rest on GG; the sides on FF. Doors and windows are cut out, and handrails, etc., added to make the locomotive suggest the real thing—except for the proportionate size and arrangement of the wheels.
Electrical Connections.—The current collector, CR, should be well turned up at the end, so as not to catch on the centre rail joints, and not press hard enough on the rail to cause noticeable resistance. The fixed end of CR is connected through T2 with one brush, B, and both wheel bearings with T1.
[Illustration: FIG. 48.—Reversing switch.]
Electrical Fittings.—The best source of power to use is dry cells giving 1-1/2 to 2 volts each. These can be bought at 1s. apiece in fairly large sizes. Four or five connected in series will work quite a long line if the contacts are in good condition.
A reversing switch is needed to alter the direction of the current flow. The construction of one is an exceedingly simple matter. Fig. 48 gives a plan of switch and connection, from which the principle of the apparatus will be gathered. The two links, LL, are thin springy brass strips slightly curved, and at the rear end pivoted on the binding posts T1 T2. Underneath the other ends solder the heads of a couple of brass nails. The links are held parallel to one another by a wooden yoke, from the centre of which projects a handle. The three contacts C1 C2 C3 must be the same distance apart as the centres of the link heads, and so situated as to lie on the arcs of circles described by the links. The binding post T3 is connected with the two outside contacts—which may be flat-headed brass nails driven in almost flush with the top of the wooden base—by wires lying in grooves under the base, and T4 with the central contact. As shown, the switch is in the neutral position and the circuit broken.
[Illustration: Fig. 49.—Multiple battery switch.]
Multiple Battery Switch.—To control the speed of the train and economize current a multiple battery switch is useful. Fig. 49 explains how to make and connect up such a switch. The contacts, C1 to C5, lie in the path of the switch lever, and are connected through binding posts T1 to T6 with one terminal of their respective cells. The cells are coupled up in series to one another, and one terminal of the series with binding posts T0 and T6. By moving the lever, any number of the cells can be put in circuit with T7. The button under the head of the lever should not be wide enough to bridge the space between any two contacts. Change the order of the cells occasionally to equalize the exhaustion.
[Illustration: FIG. 50.—Adjustable resistance for controlling current.]
Resistance.—With accumulators, a "resistance" should be included in the circuit to regulate the flow of current. The resistance shown in Fig. 50 consists of a spiral of fine German silver wire lying in the grooved circumference of a wood disc. One of the binding posts is in connection with the regulating lever pivot, the other with one end of the coil. By moving the lever along the coil the amount of German silver wire, which offers resistance to the current, is altered. When starting the motor use as little current as possible, and open the resistance as it gets up speed, choking down again when the necessary speed is attained.
General.—All the three fittings described should for convenience be mounted on the same board, which itself may form the cover of the box holding the dry cells or accumulators.
SOME SUGGESTIONS.Instead of dry cells or accumulators a small foot or hand operated dynamo generating direct, not alternating current, might be used. Its life is indefinitely long, whereas dry cells become exhausted with use, and accumulators need recharging from time to time. On occasion such a dynamo might prove very convenient.
Anyone who possesses a fair-sized stationary engine and boiler might increase the realism of the outdoor track by setting up a generating station, which will give a good deal of extra fun.
XIV. A SIMPLE RECIPROCATING ENGINE.Figs. 51 and 52 illustrate a very simple form of fixed-cylinder engine controlled by a slide valve.
An open-ended "trunk" piston, similar in principle to that used in gas engines, is employed; and the valve is of the piston type, which is less complicated than the box form of valve, though less easily made steam-tight in small sizes. The engine is single-acting, making only one power stroke per revolution.
The cylinder is a piece of brass tubing; the piston another piece of tubing, fitting the first telescopically. Provided that the fit is true enough to prevent the escape of steam, while not so close as to set up excessive friction, a packing behind the piston is not needed; but should serious leakage be anticipated, a packing of thick felt or cloth, held up by a washer and nuts on the gudgeon G, will make things secure. Similarly for the built-up piston valve P may be substituted a piece of close-fitting brass rod with diameter reduced, except at the ends, by filing or turning, to allow the passage of steam.
CONSTRUCTION.[Illustration: FIG. 51.—Elevation of simple reciprocating steam engine.]
The bed is made of wood, preferably oak, into the parts of which linseed oil is well rubbed before they are screwed together, to prevent the entry of water. A longitudinal groove is sawn in the top of the bed, as indicated by the dotted line in Fig. 51, to give room for the connecting rod in its lowest position, and a cross groove is scooped in line with the crank shaft to accommodate the lower part of the crank disc and the big end of the rod. (If the wing W under the cylinder is screwed to the side of the bed, instead of passing through it, as shown, a slight cutting away of the edge will give the necessary clearance in both cases. )
[Illustration: FIG. 52.—Plan of simple reciprocating steam engine.]
The cylinder and valve tube A should be flattened by filing and rubbing on emery cloth, so that they may bed snugly against one another and give a good holding surface for the solder. A steam port, S P, should next be bored in each, and the "burr" of the edges cleaned off carefully so as not to obstruct valve or piston in the slightest degree. "Tin" the contact surfaces thinly, and after laying valve tube and cylinder in line, with the portholes corresponding exactly, bind them tightly together with a turn or two of wire, or hold them lightly in a vice, while the solder is made to run again with the aid of a spirit lamp. If it seems necessary, run a little extra solder along the joint, both sides, and at the ends.
The valve, if built up, consists of a central rod, threaded at the rear end, four washers which fit the tube, and a central spacing-piece. The forward washer is soldered to the rod. Behind this is placed a felt packing. Then come in order the central spacing-piece, with a washer soldered to each end, a second packing, and a fourth washer. The series is completed by an adjusting nut to squeeze the packings, and a lock nut to prevent slipping. The back end of the valve must be wide enough to just more than cover the steam port. If the felt proves difficult to procure or fit, one may use a ring or two of brass tubing, with an external packing of asbestos cord.
The cylinder wing W should have the top edge turned over for an eighth of an inch or so to give a good bearing against the cylinder, and be held in position by a wire while the soldering is done. It is important that the line of the wing should be at right angles to a line passing through the centres of the valve tube and cylinder.
Shaft Bearings.—Take a piece of strip brass half an inch or so wide and 3-1/2 inches long. Bore four holes for screws, and scratch cross lines an inch from each extremity. Turn up the ends at these lines at right angles to the central part, stand the piece on some flat surface, and on the outer faces of the uprights scratch two cross lines at the height of the centre of the cylinder above the bed. Mark the central points of these lines.
Next select a piece of brass tubing which fits the rod chosen for the crank shaft, and bore in the bearing standards two holes to fit this tubing. Slip the tubing through the standards and solder it to them. The ends and central parts
Comments (0)