From Newton to Einstein - Benjamin Harrow (fox in socks read aloud txt) 📗
- Author: Benjamin Harrow
- Performer: -
Book online «From Newton to Einstein - Benjamin Harrow (fox in socks read aloud txt) 📗». Author Benjamin Harrow
Both Newton and Einstein were led to their theory of gravitation by profound studies of the mathematics of motion, but as Newton’s conception of motion differed from Einstein’s, and as, moreover, important discoveries into the nature of matter and the relationship of motion to matter were made subsequent to Newton’s time, we need not wonder that the two theories show divergence; that, as we shall see, Newton’s is probably but an approximation of the truth. If we confine our attention to our own solar system, the deviation from Newton’s law is, as a rule, so small as to be negligible.
Newton’s laws of motion are really axioms, like the axioms of Euclid: they do not admit of direct proof; but there is this difference, that the axioms of Euclid seem more obviously true. For example, when Euclid informs us that “things which are equal to the same thing are equal to one another,” we have no hesitation in accepting this statement, for it seems so self-evident. When, however, we are told by Newton that “the alteration of motion is ever proportional to the motive force impressed,” we are at first somewhat bewildered with the phraseology, and then, even when that has been mastered, the readiness with which we respond will probably depend upon the amount of scientific training we have received.
“Every body continues in its state of rest or of uniform motion in a straight line, unless it is compelled to change that state by forces impressed thereon.” So runs Newton’s first law of motion. A body does not move unless something causes it to move; to make the body move you must overcome the inertia of the body. On the other hand, if a body is moving, it tends to continue moving, as witness our forward movement when the train is brought to a standstill. It may be asked, why does not a bullet continue moving indefinitely once it has left the barrel of the gun? Because of the resistance of the air which it has to overcome; and the path of the bullet is not straight because gravity acts on it and tends to pull it downwards.
We have no definite means of proving that a body once set in motion would continue moving, for an indefinite time, and along a straight line. What Newton meant was that a body would continue moving provided no external force acted on it; but in actual practise such a condition is unknown.
Newton’s first law defines force as that action necessary to change a state of rest or of uniform motion, and tells us that force alone changes the motion of a body. His second law deals with the relation of the force applied and the resulting change of motion of the body; that is, it shows us how force may be measured. “The alteration of motion is ever proportional to the motive force impressed, and is made in the direction of the right line in which that force is impressed.”
Newton’s third law runs—“To every action there is always opposed an equal reaction.” The very fact that you have to use force means that you have to overcome something of an opposite nature. The forward pull of a horse towing a boat equals the backward pull of the tow-rope connecting boat and horse. “Many people,” says Prof. Watson, “find a difficulty in accepting this statement … since they think that if the force exerted by the horse on the rope were not a little greater than the backward force exerted by the rope on the horse, the boat would not progress. In this case we must, however, remember that, as far as their relative positions are concerned, the horse and the boat are at rest, and form a single body, and the action and reaction between them, due to the tension on the rope, must be equal and opposite, for otherwise there would be relative motion, one with respect to the other.”
It may well be asked, what bearing have these laws of Newton on the question of time and space? Simply this, that to measure force the factors necessary are the masses of the bodies concerned, the time involved and the space covered; and Newton’s equations for measuring forces assume time and space to be quite independent of one another. As we shall see, this is in striking contrast to Einstein’s view.
Newton’s Researches on Light. In 1665, when but 23 years old, Newton invented the binomial theorem and the infinitesimal calculus, two phases of pure mathematics which have been the cause of many a sleepless night to college freshmen. Had Newton done nothing else his fame would have been secure. But we have already glanced at his law of inverse squares and the law of gravitation. We now have to turn to some of Newton’s contributions to optics, because here more than elsewhere we shall find the starting point to a series of researches which have culminated so brilliantly in the work of Einstein.
Newton turned his attention to optics in 1666 when he proved that the light from the sun, which appears white to us, is in reality a mixture of all the colors of the rainbow. This he showed by placing a prism between the ray of light and a screen. A spectrum showing all the colors from red to violet appeared on the screen.
Another notable achievement of his was the design of a telescope which brought objects to a sharp focus and prevented the blurring effects which had occasioned so much annoyance to Newton and his predecessors in all their astronomical observations.
These and other discoveries of very great interest were brought together in a volume on optics which Newton published in 1704. Our particular concern here is to examine the views advanced by him as to the nature of light.
That the nature of light should have been a subject for speculation even to the ancients need not surprise us. If other senses, as touch, for example, convey impressions of objects, it is true to say that the sense of sight conveys the most complete impression. Our conception of the external world is largely based upon the sense of sight; particularly so when we deal with objects beyond our reach. In astronomy, therefore, a study of the properties of light is indispensable.1
But what is this light? We open our eyes and we see; we close our eyes and we fail to see. At night in a dark room we may have our eyes open and yet we do not see; light, then, must be absent. Evidently, light does not wholly depend upon whether our eyes are open or closed. This much is certain: the eye functions and something else functions. What is this “something else”?
Strangely enough, Plato and Aristotle regarded light as a property of the eye and the eye alone. Out of the eye tentacles were shot which intercepted the object and so illuminated it. From what has already been said, such a view seems highly unlikely. Far more consistent with their philosophy in other directions would have been the theory that light has its source in the object and not in the eye, and travels from object to eye rather than the reverse. How little substance the Aristotelian contribution possesses is immediately seen when we refer to the art of photography. Here light rays produce effects which are independent of any property of the eye. The blind man may click the camera and produce the impression on the plate.
Newton, of course, could have fallen into no such error as did Plato and Aristotle. The source of light to him was the luminous body. Such a body had the power of emitting minute particles at great speed, and these when coming in contact with the retina produce the sensation of sight.
This emission or corpuscular theory of Newton’s was combated very strongly by his illustrious Dutch contemporary, Huyghens, who maintained that light was a wave phenomenon, the disturbance starting at the luminous body and spreading out in all directions. The wave motions of the sea offer a certain analogy.
Newton’s strongest objection to Huyghens’ wave theory was that it seemed to offer no satisfactory explanation as to why light travelled in straight lines. He says: “To me the fundamental supposition itself seems impossible, namely that the waves or vibrations of any fluid can, like the rays of light, be propagated in straight lines, without a continual and very extravagant bending and spreading every way into the quiescent medium, where they are terminated by it. I mistake if there be not both experiment and demonstration to the contrary.”
In the corpuscular theory the particles emitted by the luminous body were supposed to travel in straight lines. In empty space the particles travelled in straight lines and spread in all directions. To explain how light could traverse some types of matter—liquids, for example—Newton supposed that these light particles travelled in the spaces between the molecules of the liquid.
Newton’s objection to the wave theory was not answered very convincingly by Huyghens. Today we know that light waves of high frequency tend to travel in straight lines, but may be prevented from doing so by gravitational forces of bodies near its path. But this is Einstein’s discovery.
A very famous experiment by Foucault in 1853 proved beyond the shadow of a doubt that Newton’s corpuscular theory was untenable. According to Newton’s theory, the velocity of light must be greater in a denser medium (such as water) than in a lighter one (such as air). According to the wave theory the reverse is true. Foucault showed that light does travel more slowly in water than in air. The facts were against Newton and in favor of Huyghens; and where facts and theory clash there is but one thing to do: discard the theory.
Some Facts about Newton. Newton was a Cambridge man, and Newton made Cambridge famous as a mathematical center. Since Newton’s day Cambridge has boasted of a Clerk Maxwell and a Rayleigh, and her Larmor, her J. J. Thomson and her Rutherford are still with us. Newton entered Trinity College when he was 18 and soon threw himself into higher mathematics. In 1669, when but 27 years old, he became professor of mathematics at Cambridge, and later represented that seat of learning in Parliament. When his friend Montague became Chancellor of the Exchequer, Newton was offered, and accepted, the lucrative position of Master of the Mint. As president of the Royal Society Newton was occasionally brought in contact with Queen Anne. She held Newton in high esteem, and in 1705 she conferred the honor of knighthood on him. He died in 1727.
“I do not know,” wrote Newton, “what I may appear to the world, but, to myself, I seem to have been only like a boy playing on the seashore, and directing myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.”
Such was the modesty of one whom many regard as the greatest intellect of all ages.
An excellent account of Newton may be found in Sir R. S. Ball’s Great Astronomers (Sir Isaac Pitman and Sons, Ltd., London). Sedgewick and Tyler’s A Short History of Science (Macmillan, 1918) and Cajori’s A History of Mathematics (Macmillan, 1917) may also be
Comments (0)