Seasoning of Wood - Joseph Bernard Wagner (no david read aloud .TXT) 📗
- Author: Joseph Bernard Wagner
- Performer: -
Book online «Seasoning of Wood - Joseph Bernard Wagner (no david read aloud .TXT) 📗». Author Joseph Bernard Wagner
There is more checking in the wood of the broad-leaf (hardwood) trees than in that of the coniferous (softwood) trees, more in sapwood than in heartwood, and more in summer-wood than in spring-wood.
Inasmuch as under normal conditions of weather, water evaporates less rapidly during the early seasoning of winter, wood that is cut in the autumn and early winter is considered less subject to checking than that which is cut in spring and summer.
Rapid seasoning, except after wood has been thoroughly soaked or steamed, almost invariably results in more or less serious checking. All hardwoods which check or warp badly during the seasoning should be reduced to the smallest practicable size before drying to avoid the injuries involved in this process, and wood once seasoned should never again be exposed to the weather, since all injuries due to seasoning are thereby aggravated.
Seasoning increases the strength of wood in every respect, and it is therefore of great importance to protect the wood against moisture.
Changes rendering Drying difficultAn important property rendering drying of wood peculiarly difficult is the changes which occur in the hygroscopic properties of the surface of a stick, and the rate at which it will allow moisture to pass through it. If wood is dried rapidly the surface soon reaches a condition where the transfusion is greatly hindered and sometimes appears almost to cease. The nature of this action is not well understood and it differs greatly in different species. Bald cypress (Taxodium distichum) is an example in which this property is particularly troublesome. The difficulty can be overcome by regulating the humidity during the drying operation. It is one of the factors entering into production of what is called "case-hardening" of wood, where the surface of the piece becomes hardened in a stretched or expanded condition, and subsequent shrinkage of the interior causes "honeycombing," "hollow-horning," or internal checking. The outer surface of the wood appears to undergo a chemical change in the nature of hydrolization or oxidization, which alters the rate of absorption and evaporation in the air.
As the total amount of shrinkage varies with the rate at which the wood is dried, it follows that the outer surface of a rapidly dried board shrinks less than the interior. This sets up an internal stress, which, if the board be afterward resawed into two thinner boards by slicing it through the middle, causes the two halves to cup with their convex surfaces outward. This effect may occur even though the moisture distribution in the board has reached a uniform condition, and the board is thoroughly dry before it is resawed. It is distinct from the well-known "case-hardening" effect spoken of above, which is caused by unequal moisture conditions.
The manner in which the water passes from the interior of a piece of wood to its surface has not as yet been fully determined, although it is one of the most important factors which influence drying. This must involve a transfusion of moisture through the cell walls, since, as already mentioned, except for the open vessels in the hardwoods, free resin ducts in the softwoods, and possibly the intercellular spaces, the cells of green wood are enclosed by membranes and the water must pass through the walls or the membranes of the pits. Heat appears to increase this transfusion, but experimental data are lacking.
It is evident that to dry wood properly a great many factors must be taken into consideration aside from the mere evaporation of moisture.
Losses Due to Improper Kiln-dryingIn some cases there is practically no loss in drying, but more often it ranges from 1 to 3 per cent, and 7 to 10 per cent in refractory woods such as gum. In exceptional instances the losses are as high as 33 per cent.
In air-drying there is little or no control over the process; it may take place too rapidly on some days and too slowly on others, and it may be very non-uniform.
Hardwoods in large sizes almost invariably check.
By proper kiln-drying these unfavorable circumstances may be eliminated. However, air-drying is unquestionably to be preferred to bad kiln-drying, and when there is any doubt in the case it is generally safer to trust to air-drying.
If the fundamental principles are all taken care of, green lumber can be better dried in the dry kiln.
Properties of Wood that affect DryingIt is clear, from the previous discussion of the structure of wood, that this property is of first importance among those influencing the seasoning of wood. The free water way usually be extracted quite readily from porous hardwoods. The presence of tyloses in white oak makes even this a difficult problem. On the other hand, its more complex structure usually renders the hygroscopic moisture quite difficult to extract.
The lack of an open, porous structure renders the transfusion of moisture through some woods very slow, while the reverse may be true of other species. The point of interest is that all the different variations in structure affect the drying rates of woods. The structure of the gums suggests relatively easy seasoning.
Shrinkage is a very important factor affecting the drying of woods. Generally speaking, the greater the shrinkage the more difficult it is to dry wood. Wood shrinks about twice as much tangentially as radially, thus introducing very serious stresses which may cause loss in woods whose total shrinkage is large. It has been found that the amount of shrinkage depends, to some extent, on the rate and temperature at which woods season. Rapid drying at high or low temperature results in slight shrinkage, while slow drying, especially at high temperature, increases the shrinkage.
As some woods must be dried in one way and others in other ways, to obtain the best general results, this effect may be for the best in one case and the reverse in others. As an example one might cite the case of Southern white oak. This species must be dried very slowly at low temperatures in order to avoid the many evils to which it is heir. It is interesting to note that this method tends to increase the shrinkage, so that one might logically expect such treatment merely to aggravate the evils. Such is not the case, however, as too fast drying results in other defects much worse than that of excessive shrinkage.
Thus we see that the shrinkage of any given species of wood depends to a great extent on the method of drying. Just how much the shrinkage of gum is affected by the temperature and drying rate is not known at present. There is no doubt that the method of seasoning affects the shrinkage of the gums, however. It is just possible that these woods may shrink longitudinally more than is normal, thus furnishing another cause for their peculiar action under certain circumstances. It has been found that the properties of wood which affect the seasoning of the gums are, in the order of their importance: (1) The indeterminate and erratic grain; (2) the uneven shrinkage with the resultant opposing stresses; (3) the plasticity under high temperature while moist; and (4) the slight apparent lack of cohesion between the fibres. The first, second, and fourth properties are clearly detrimental, while the third may possibly be an advantage in reducing checking and "case-hardening."
The grain of the wood is a prominent factor also affecting the problem. It is this factor, coupled with uneven shrinkage, which is probably responsible, to a large extent, for the action of the gums in drying. The grain may be said to be more or less indeterminate. It is usually spiral, and the spiral may reverse from year to year of the tree's growth. When a board in which this condition exists begins to shrink, the result is the development of opposing stresses, the effect of which is sometimes disastrous. The shrinkage around the knots seems to be particularly uneven, so that checking at the knots is quite common.
Some woods, such as Western red cedar, redwood, and eucalyptus, become very plastic when hot and moist. The result of drying-out the free water at high temperature may be to collapse the cells. The gums are known to be quite soft and plastic, if they are moist, at high temperature, but they do not collapse so far as we have been able to determine.
The cells of certain species of wood appear to lack cohesion, especially at the junction between the annual rings. As a result, checks and ring shakes are very common in Western larch and hemlock. The parenchyma cells of the medullary rays in oak do not cohere strongly and often check open, especially when steamed too severely.
Unsolved Problems in Kiln-drying1. Physical data of the properties of wood in relation to heat are meagre.
2. Figures on the specific heat of wood are not readily available, though upon this rests not only the exact operation of heating coils for kilns, but the theory of kiln-drying as a whole.
3. Great divergence is shown in the results of experiments in the conductivity of wood. It remains to be seen whether the known variation of conductivity with moisture content will reduce these results to uniformity.
4. The maximum or highest temperature to which the different species of wood may be exposed without serious loss of strength has not yet been determined.
5. The optimum or absolute correct temperature for drying the different species of wood is as yet entirely unsettled.
6. The inter-relation between wood and water is as imperfectly known to dry-kiln operators as that between wood and heat.
7. What moisture conditions obtain in a stick of air-dried wood?
8. How is the moisture distinguished?
9. What is its form?
10. What is the meaning of the peculiar surface conditions which even in air-dried wood appear to indicate incipient "case-hardening"?
11. The manner in which the water passes from the interior of a piece of wood to its surface has not as yet been fully determined.
These questions can be answered thus far only by speculation or, at best, on the basis of incomplete data.
Until these problems are solved, kiln-drying must necessarily remain without the guidance of complete scientific theory.
A correct understanding of the principles of drying is rare, and opinions in regard to the subject are very diverse. The same lack of knowledge exists in regard to dry kilns. The physical properties of the wood which complicate the drying operation and render it distinct from that of merely evaporating free water from some substance like a piece of cloth must be studied experimentally. It cannot well be worked out theoretically.
SECTION X HOW WOOD IS SEASONED Methods of DryingThe choice of a method of drying depends largely upon the object in view. The principal objects may be grouped under three main heads, as follows:
1. To reduce shipping weight. 2. To reduce the quantity necessary to carry in stock. 3. To prepare the wood for its ultimate use and improve its qualities.When wood will stand the temperature without excessive checking or undue shrinkage or loss in strength, the first object is most readily attained by heating the wood above the boiling point in a closed chamber, with a large circulation of air or vapor, so arranged that the excess steam produced will escape. This process manifestly does not apply to many of the hardwoods, but is applicable to many of the softwoods. It is used especially in the northwestern part of the United States, where Douglas fir boards one inch thick are dried in from 40 to 65 hours, and sometimes in as short a time as 24 hours. In the latter case superheated steam at 300 degrees Fahrenheit was forced into the chamber but, of course, the lumber could not be heated thereby much above the boiling point so long as it contained any free water.
This lumber, however, contained but 34 per cent moisture to
Comments (0)